(3.238.174.50) 您好!臺灣時間:2021/04/18 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:華緒丞
研究生(外文):Hsu-Cheng, Hua
論文名稱:應用密度泛函數理論計算金屬錯合物光化學反應:(I) 五配位錯合物M(CO)4(CS)含VIB族元素(M = Cr, Mo及W)之光異構化反應機制 (II) 二聚富瓦烯羰基錯合物(M = Fe, Ru及Os)之光解與熱逆轉反應機制分析:有機金屬分子在太陽能-熱能之模型研究
論文名稱(外文):(I) A Mechanistic Analysis of the Photo-isomerization Reactions of Five Coordinated M(CO)4(CS) Complexes That Contain a Group VIB Element (M = Cr, Mo, and W) (II) A Mechanistic Analysis of the Photoisomerization and Thermal Reversal Reactions of Dimeric Fulvalene Carbonyl Complexes (M = Fe, Ru, and Os): A Model Study for Molecular Solar-Thermal Energy
指導教授:蘇明德蘇明德引用關係
指導教授(外文):Ming-Der, Su
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:104
語文別:中文
論文頁數:115
中文關鍵詞:密度泛函數理論光異構化反應機制二聚富瓦烯羰基錯合物光重排系間跨越熱逆轉
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一、中文摘要
本篇論文使用M06-2X/Def2-SVPD之理論層次,並採用五配位M(CO)4(CS) (M = Cr, Mo, and W)錯合物作為研究模型來研究光異構化反應之反應機制。本文將對此錯合物光化學反應機制之首次驗證,同時也將對五配位金屬錯合物 之此種光重排(photorearrangements) 反應機制作第一次理論計算證明。
此研究模型顯示,光重排反應將較為傾向於以下反應路徑:反應物 → 弗蘭克-康登區(Franck-Condon region)→ 最低中間態(三重態)→ 過渡狀態(三重態)→ 三重態/單重態之系間跨越(triplet/singlet intersystem crossing)→ 光產物。
理論研究結果也顯示在此光異構反應中並不存在其他的自由基,且各關鍵點間之能量差異極小,這也證明了M(CO)4(CS)分子在經由光照射後,CS配體很容易地經由旋轉形成不同的構像,此光化學反應機制與目前可觀察到之實驗結果相符合。

二、中文摘要
本研究使用M06-2X/Def2-SVPD理論層級來計算FvFe2(CO)4, FvRu2(CO)4, 以及FvOs2(CO)4 (Fv = bi(cyclopentadienylidene))之光化學異構化反應以及熱逆轉反應之位能面。
理論研究結果指出,這些反應物之光異構化反應之反應機制皆遵循以下反應途徑:反應物(S0)→弗蘭克-康登區域(Frank-Condon region)→ 中間體(T1)→ 過渡狀態1(T1)→ 系間跨越(intersystem crossing)(T1/S0)→ 中間體-順式(S0)→過渡狀態1(S0)→ 中間體-反式(S0)→ 過渡狀態2(S0)→ 4元環產物。而熱逆轉反應預期將遵循以下反應路徑:4元環產物 → 過渡狀態2(S0)→中間體-反式(S0)→ 過渡狀態1(S0)→ 中間體-順式(S0)→ 反應物(S0)。
從這些理論研究結果表明,8族元素(Fe, Ru以及Os)之原子半徑及其M-C鍵強度對於整個光異構化以及熱逆轉反應來說是至關重要的。

1. Abstract
The mechanisms of the photo-isomerization reactions are investigated theoretically at the M06-2X/Def2-SVPD level of theory, using the five coordinated M(CO)4(CS) (M = Cr, Mo, and W) complexes as model systems. This work demonstrates the first examination of the photochemical mechanisms of such complexes. This study provides the first theoretical evidence for the mechanisms of such photorearrangements of the five coordinated metal complexes. The model investigation indicates that the preferred reaction route for the photorearrangement reactions is as follows: reactant Franck-Condon region minimum (triplet)transition state (triplet) triplet/singlet intersystem crossing photoproduct. The theoretical findings also reveal that no radicals exist during such photo-isomerization reactions and that the energy differences between the crucial points are quite small, which demonstrates that the CS group rotates easily to form the different conformations, after the M(CO)4(CS) molecules have been photo-irradiated. These photochemical mechanisms are consistent with the available experimental observations.

2. Abstract
The potential energy surfaces that correspond to the photochemical isomerization reactions and the thermal reversal reactions of FvFe2(CO)4, FvRu2(CO)4, and FvOs2(CO)4 (Fv = bi(cyclopentadienylidene)) are studied using the M06-2X/Def2-SVPD method. The theoretical findings indicate that that the photoisomerization reactions of these reactants all undertake the same reaction path, as follows: reactant (S0) Franck-Condon region intermediate (T1)  transition state-1 (T1) intersystem crossing (T1/S0)  intermediate-cis (S0)  transition state-1 (S0)  intermediate-trans (S0) transition state-2 (S0)  4-membered ring product. However, the thermal reversal reaction is predicted to proceed as follows: 4-membered ring product  transition state-2 (S0)  intermediate-trans (S0)  transition state-1 (S0)  intermediate-cis (S0) reactant (S0). These theoretical findings demonstrate that the atomic radius of the group 8 element (Fe, Ru, and Os), as well as the M-C bond strength are crucial in determining the reactivity of the photoisomerization and the thermal reversal reactions.

總目錄 I
圖目錄 III
表目錄 4
流程目錄 5
緒論 6
1-1 密度泛函理論簡介 7
1-2 基底函數簡介 10
1-3 電算方法 15
【第一部分】 18
中文摘要 19
Abstract 20
一、五配位錯合物M(CO)5 (M= Cr, Mo, W)簡介及研究動機 21
二、實驗方法 23
三、結果與討論 24
3-1 M(CS)(CO)4之光重排反應型態討論 24
3-2 M(CS)(CO)4錯合物之定性位能面分析 25
3-3 M(CS)(CO)4錯合物之能量 27
四、結論 35
五、參考文獻 36
六、計算資料 38
【第二部分】 61
中文摘要 62
Abstract 63
一、 二聚體富瓦烯金屬錯合物介紹及研究動機 64
二、 實驗方法 66
三、 結果與討論 66
3-1二聚體富瓦烯金屬錯合物之計算數據與實驗比較 66
3-2二聚體富瓦烯金屬錯合物之定性分析 70
3-3 二聚體富瓦烯金屬錯合物之反應機制與能量討論 73
四、 結論 81
五、參考文獻 82
六、計算資料 85

(1) (a) Wrighton, M. Chem. Rev. 1974, 74, 401. (b) Vogler, A. in Concepts in Inorganic Photochemistry, Adamson, A. W.; Fleischauer, P. D., Ed., Welly, New York, N. Y., 1975. (c) Kuendig, E. P.; Ozin, G. A. J. Am. Chem. Soc. 1974, 96, 3820. (d) Huber, H.; Kundig, E. P.; Ozin, G. A.; Poe, A. J. J. Am. Chem. Soc. 1974, 97, 308. (e) Perutz, R. N.; Turner, J. J. J. Am. Chem. Soc. 1975, 97, 4805. (f) Burdett, J. K.; Perutz, R. N.; Poliakoff, M.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1975, 157. (g) Barnes, D.S.; Pilcher, G.; Pittam, D. A.; Skinner, H. A.; Todd, D. Journal of the Less Common Metals 1974, 38, 53. (h) Burdett, J. K.; Grzybowski, J. M.; Perutz, R. N.; Poliakoff, M.; Turner, J. J.; Turner, R. F. Inorg. Chem. 1978, 17, 147. (i) Simpson, M. B.; Poliakoff, M.; Turner, J. J.; Maier, W. B.; McLaughlin, J. G. J. Chem. Soc., Chem. Commun. 1983, 1355. (j) Maier, W. B.; Poliakoff, M.; Simpson, M. B.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1980, 587. (k) Upmacis, K.; Gadd, G. E.; Poliakoff, M.; Simpson, M. B.; Turner, J. J.; Whyman, R.; Simpson, A. F. J. Chem. Soc., Chem. Commun. 1985, 27. (l) Shanoski, J. E.; Payne, C. K.; Kling, M. F.; Clascoe, E. A.; Harris, C. B. Organometallics 2005, 24, 1852. (m) Shanoski, J. E.; Clascoe, E. A.; Harris, C. B. J. Phys. Chem. B 2006, 110, 996.
(2) Hay, P. J. J. Am. Chem. Soc. 1975, 100, 2411.
(3) (a) Poliakoff, M. Inorg. Chem. 1976, 15, 2022. (b) Poliakoff, M. Inorg. Chem. 1976, 15, 2892.
(4) Albright, T. A.; Burdett, J. K.; Whangbo, M. H. in Orbital Interaction in Chemistry, Wiley: New York, 1985; p318-319.
(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT, 2013.
(6) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(7) The Def2-SVPD basis sets see: (a) Andrae, D.; Haeussermann, U.; Stoll, M. H.; Preuss, H. Theor. Chim. Acta, 1990, 77, 123. (b) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. (c) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.
(8) (a) Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc. 1998, 99, 95. (b) Harvey, J. N.; Aschi, M. Phys. Chem. Chem. Phys. 1999, 1, 5555.
(9) Gillespie, R. J. in Molecular Geometry, Van Nostrand-Reinhold, London (1972).
(10) For comparisons, the MC, CO, and CS bonds in the M(CS)(CO)4 complexes shown in 流程5. are fixed to be 1.35, 1.30, 1.09, 1,30 and 1.30Å, respectively. Also, the CMC(apcial), MCO, and MCS bond angles are fixed to be 90°, 180°, and 180°, respectively. These bending angles were obtained without full optimizations of the reactants. Nevertheless, they at least give us a hint that degeneracy between singlet and triplet can exist as a result of the bend of aCMC angle.
(11) The M06-2X/Def2-SVPD computational data indicate that the relative energies (kcal/mol) of the electronic states are as follows: S0 (0.00) < T1 (14.48) < T2 (18.38) < S1 (30.96) < S2 (30.97), S0 (0.00) < T1 (38.01) < T2 (39.27) < S1 (47.93) < S2 (51.36), and S0 (0.00) < T1 (30.47) < S1 (31.56) < T2 (32.18) < S2 (32.20) for Cr(CS)(CO)4 (A-S0-Cr), Mo(CS)(CO)4 (A-S0-Mo), and W(CS)(CO)4 (A-S0-W), respectively.


(1) Gur, I.; Sawyer, K.; Prasher, R. Science 2012, 335, 1454.
(2) Carroll, A.; Somerville, C. Annu. Rev. Plant Biol. 2009, 60, 165.
(3) Kucharski, T. J.; Tian, Y.; Akbulatov S.; Boulatov, R. Energy Environ. Sci. 2011, 4, 4449.
(4) See reviews: (a) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Chem. Rev. 2010, 110, 6474. (b) Kucharski, T. J.; Ferralis, N.; Kolpak, A. M.; Zheng, J. O.; Nocera, D. G.; Grossman, J. C. Nature Chem. 2014, 6, 441. (c) Durgun, E.; Grossman, J. C. J. Phys. Chem. Lett. 2013, 4, 854. (d) Kolpak, A. M.; Grossman, J. C. J. Chem. Phys. 2013, 138, 034303.
(5) See reviews: Lomont, J. P.; Harris, C. B. Inorg Chim Acta. 2015, 424, 38.
(6) Hou, Z.; Nguyen, S. C.; Lomont, J. P.; Harris, C. B.; Vinokurov, N.; Vollhardt, K. P. C. Phys. Chem. Chem. Phys. 2013, 15, 7466.
(7) Börjesson, K.; Ćoso, D.; Gray, V.; Grossman, J. C.; Guan, J.; Harris, C. B.; Hertkorn, N.; Hou, Z.; Kanai, Y.; Lee, D; Lomont, J. P.; Majumdar, A.; Meier, S. K.; Moth-Poulsen, K.; Myrabo, R. L.; Nguyen, S. C.; Segalman, R. A.; Srinivasan, V.; Tolman, W. B.; Vinokurov, N.; Vollhardt, K. P. C.; Weidman, T. W. Chem. Eur. J. 2014, 20, 15587.
(8) Harpham, M. R.; Nguyen, S. C.; Hou, Z.; Grossman, J. C.; Harris, C. B.; Mara, M. W.; Stickrath, A. B.; Kanai, Y.; Kolpak, A. M.; Lee, D.; Liu, D. J.; Lomont, J. P.; Moth-Poulsen, K.; Vinokurov, N.; Chen, L. X.; Vollhardt, K. P. C. Angew. Chem. Int. Ed. 2012, 51, 7692.
(9) Boese, R.; Cammack, J. K.; Matzger, A. J.; Pflug, K.; Tolman, W. B.; Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1997, 119, 6757.
(10) Kanai, Y.; Srinivasan, V.; Meier, S. K.; Vollhardt, K. P. C.; Grossman, J. C. Angew. Chem. Int. Ed. 2010, 49, 8926.
(11) Moth-Poulsen, K.; Ćoso, D.; Borjesson, K.; Vinokurov, N.; Meier, S. K.; Majumdar, A.; Vollhardt, K. P. C.; Segalman, R. A. Energy Environ. Sci. 2012, 5, 8534.
(12) Bitterwolf, T. E. Coord. Chem. Rev. 2000, 206–207, 419.
(13) Börjesson, K.; Lennartson, A.; Moth-Poulsen, K. J. Fluorine Chem. 2014, 161, 24.
(14) Börjesson, K.; Dzebo, D.; Albinsson, B.; Moth-Poulsen, K. J. Mater. Chem. A 2013, 1, 8521.
(15) Börjesson, K.; A. Lennartson, A.; Moth-Poulsen, K. ACS Sustainable Chem. Eng. 2013, 1, 585.
(16) Cho, J.; Berbil-Bautista, L.; Pechenezhskiy, I. V.; Levy, N.; Meier, S. K.; Srinivasan, V.; Kanai, Y.; Grossman, J. C.; Vollhardt, K. P. C.; Crommie, M. F. ACS Nano 2011, 5, 3701.
(17) Zhu, B.; Miljanić, O. Š.; Vollhardt, K. P. C.; West, M. J. Synthesis, 2005, 37, 3373.
(18) Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1983, 105, 1676.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT, 2013.
(20) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(21) The Def2-SVPD basis sets see: (a) Andrae, D.; Haeussermann, U.; Stoll, M. H.; Preuss, H. Theor. Chim. Acta, 1990, 77, 123. (b) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. (c) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.
(22) (a) Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc. 1998, 99, 95. (b) Harvey, J. N.; Aschi, M. Phys. Chem. Chem. Phys. 1999, 1, 5555.
(23) (a) Hofmann, P. Angew. Chem. Int. Ed. Engl. 1977, 16, 536. (b) Hofmann, P. Angew. Chem. Int. Ed. Engl. 1979, 18, 554. (c) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585. (d) Bursten, E. B.; Cayton, R. H. Organometallics 1988, 7, 1349. (e) Costuas, K.; Saillard, J.-Y. Organometallics 1999, 18, 2505.
(24) Russo, N.; Salahub, D. R., Metal-Ligand Interactions Structure and Reactivity, Springer: Netherlands, 1996, p.192.
(25) Veillard, A. Chem. Rev. 1991, 91, 743.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔