|
(1) (a) Wrighton, M. Chem. Rev. 1974, 74, 401. (b) Vogler, A. in Concepts in Inorganic Photochemistry, Adamson, A. W.; Fleischauer, P. D., Ed., Welly, New York, N. Y., 1975. (c) Kuendig, E. P.; Ozin, G. A. J. Am. Chem. Soc. 1974, 96, 3820. (d) Huber, H.; Kundig, E. P.; Ozin, G. A.; Poe, A. J. J. Am. Chem. Soc. 1974, 97, 308. (e) Perutz, R. N.; Turner, J. J. J. Am. Chem. Soc. 1975, 97, 4805. (f) Burdett, J. K.; Perutz, R. N.; Poliakoff, M.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1975, 157. (g) Barnes, D.S.; Pilcher, G.; Pittam, D. A.; Skinner, H. A.; Todd, D. Journal of the Less Common Metals 1974, 38, 53. (h) Burdett, J. K.; Grzybowski, J. M.; Perutz, R. N.; Poliakoff, M.; Turner, J. J.; Turner, R. F. Inorg. Chem. 1978, 17, 147. (i) Simpson, M. B.; Poliakoff, M.; Turner, J. J.; Maier, W. B.; McLaughlin, J. G. J. Chem. Soc., Chem. Commun. 1983, 1355. (j) Maier, W. B.; Poliakoff, M.; Simpson, M. B.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1980, 587. (k) Upmacis, K.; Gadd, G. E.; Poliakoff, M.; Simpson, M. B.; Turner, J. J.; Whyman, R.; Simpson, A. F. J. Chem. Soc., Chem. Commun. 1985, 27. (l) Shanoski, J. E.; Payne, C. K.; Kling, M. F.; Clascoe, E. A.; Harris, C. B. Organometallics 2005, 24, 1852. (m) Shanoski, J. E.; Clascoe, E. A.; Harris, C. B. J. Phys. Chem. B 2006, 110, 996. (2) Hay, P. J. J. Am. Chem. Soc. 1975, 100, 2411. (3) (a) Poliakoff, M. Inorg. Chem. 1976, 15, 2022. (b) Poliakoff, M. Inorg. Chem. 1976, 15, 2892. (4) Albright, T. A.; Burdett, J. K.; Whangbo, M. H. in Orbital Interaction in Chemistry, Wiley: New York, 1985; p318-319. (5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT, 2013. (6) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. (7) The Def2-SVPD basis sets see: (a) Andrae, D.; Haeussermann, U.; Stoll, M. H.; Preuss, H. Theor. Chim. Acta, 1990, 77, 123. (b) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. (c) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. (8) (a) Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc. 1998, 99, 95. (b) Harvey, J. N.; Aschi, M. Phys. Chem. Chem. Phys. 1999, 1, 5555. (9) Gillespie, R. J. in Molecular Geometry, Van Nostrand-Reinhold, London (1972). (10) For comparisons, the MC, CO, and CS bonds in the M(CS)(CO)4 complexes shown in 流程5. are fixed to be 1.35, 1.30, 1.09, 1,30 and 1.30Å, respectively. Also, the CMC(apcial), MCO, and MCS bond angles are fixed to be 90°, 180°, and 180°, respectively. These bending angles were obtained without full optimizations of the reactants. Nevertheless, they at least give us a hint that degeneracy between singlet and triplet can exist as a result of the bend of aCMC angle. (11) The M06-2X/Def2-SVPD computational data indicate that the relative energies (kcal/mol) of the electronic states are as follows: S0 (0.00) < T1 (14.48) < T2 (18.38) < S1 (30.96) < S2 (30.97), S0 (0.00) < T1 (38.01) < T2 (39.27) < S1 (47.93) < S2 (51.36), and S0 (0.00) < T1 (30.47) < S1 (31.56) < T2 (32.18) < S2 (32.20) for Cr(CS)(CO)4 (A-S0-Cr), Mo(CS)(CO)4 (A-S0-Mo), and W(CS)(CO)4 (A-S0-W), respectively.
(1) Gur, I.; Sawyer, K.; Prasher, R. Science 2012, 335, 1454. (2) Carroll, A.; Somerville, C. Annu. Rev. Plant Biol. 2009, 60, 165. (3) Kucharski, T. J.; Tian, Y.; Akbulatov S.; Boulatov, R. Energy Environ. Sci. 2011, 4, 4449. (4) See reviews: (a) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Chem. Rev. 2010, 110, 6474. (b) Kucharski, T. J.; Ferralis, N.; Kolpak, A. M.; Zheng, J. O.; Nocera, D. G.; Grossman, J. C. Nature Chem. 2014, 6, 441. (c) Durgun, E.; Grossman, J. C. J. Phys. Chem. Lett. 2013, 4, 854. (d) Kolpak, A. M.; Grossman, J. C. J. Chem. Phys. 2013, 138, 034303. (5) See reviews: Lomont, J. P.; Harris, C. B. Inorg Chim Acta. 2015, 424, 38. (6) Hou, Z.; Nguyen, S. C.; Lomont, J. P.; Harris, C. B.; Vinokurov, N.; Vollhardt, K. P. C. Phys. Chem. Chem. Phys. 2013, 15, 7466. (7) Börjesson, K.; Ćoso, D.; Gray, V.; Grossman, J. C.; Guan, J.; Harris, C. B.; Hertkorn, N.; Hou, Z.; Kanai, Y.; Lee, D; Lomont, J. P.; Majumdar, A.; Meier, S. K.; Moth-Poulsen, K.; Myrabo, R. L.; Nguyen, S. C.; Segalman, R. A.; Srinivasan, V.; Tolman, W. B.; Vinokurov, N.; Vollhardt, K. P. C.; Weidman, T. W. Chem. Eur. J. 2014, 20, 15587. (8) Harpham, M. R.; Nguyen, S. C.; Hou, Z.; Grossman, J. C.; Harris, C. B.; Mara, M. W.; Stickrath, A. B.; Kanai, Y.; Kolpak, A. M.; Lee, D.; Liu, D. J.; Lomont, J. P.; Moth-Poulsen, K.; Vinokurov, N.; Chen, L. X.; Vollhardt, K. P. C. Angew. Chem. Int. Ed. 2012, 51, 7692. (9) Boese, R.; Cammack, J. K.; Matzger, A. J.; Pflug, K.; Tolman, W. B.; Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1997, 119, 6757. (10) Kanai, Y.; Srinivasan, V.; Meier, S. K.; Vollhardt, K. P. C.; Grossman, J. C. Angew. Chem. Int. Ed. 2010, 49, 8926. (11) Moth-Poulsen, K.; Ćoso, D.; Borjesson, K.; Vinokurov, N.; Meier, S. K.; Majumdar, A.; Vollhardt, K. P. C.; Segalman, R. A. Energy Environ. Sci. 2012, 5, 8534. (12) Bitterwolf, T. E. Coord. Chem. Rev. 2000, 206–207, 419. (13) Börjesson, K.; Lennartson, A.; Moth-Poulsen, K. J. Fluorine Chem. 2014, 161, 24. (14) Börjesson, K.; Dzebo, D.; Albinsson, B.; Moth-Poulsen, K. J. Mater. Chem. A 2013, 1, 8521. (15) Börjesson, K.; A. Lennartson, A.; Moth-Poulsen, K. ACS Sustainable Chem. Eng. 2013, 1, 585. (16) Cho, J.; Berbil-Bautista, L.; Pechenezhskiy, I. V.; Levy, N.; Meier, S. K.; Srinivasan, V.; Kanai, Y.; Grossman, J. C.; Vollhardt, K. P. C.; Crommie, M. F. ACS Nano 2011, 5, 3701. (17) Zhu, B.; Miljanić, O. Š.; Vollhardt, K. P. C.; West, M. J. Synthesis, 2005, 37, 3373. (18) Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1983, 105, 1676. (19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT, 2013. (20) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. (21) The Def2-SVPD basis sets see: (a) Andrae, D.; Haeussermann, U.; Stoll, M. H.; Preuss, H. Theor. Chim. Acta, 1990, 77, 123. (b) Metz, B.; Stoll, H.; Dolg, M. J. Chem. Phys. 2000, 113, 2563. (c) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. (22) (a) Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc. 1998, 99, 95. (b) Harvey, J. N.; Aschi, M. Phys. Chem. Chem. Phys. 1999, 1, 5555. (23) (a) Hofmann, P. Angew. Chem. Int. Ed. Engl. 1977, 16, 536. (b) Hofmann, P. Angew. Chem. Int. Ed. Engl. 1979, 18, 554. (c) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585. (d) Bursten, E. B.; Cayton, R. H. Organometallics 1988, 7, 1349. (e) Costuas, K.; Saillard, J.-Y. Organometallics 1999, 18, 2505. (24) Russo, N.; Salahub, D. R., Metal-Ligand Interactions Structure and Reactivity, Springer: Netherlands, 1996, p.192. (25) Veillard, A. Chem. Rev. 1991, 91, 743.
|