跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 14:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊志嘉
論文名稱:(I) 合成及鑑定以含浸法及溶膠凝膠法合成摻雜氧化鈷之二氧化鈦奈米桿 (II) 以摻雜氧化鈷之二氧化鈦奈米桿光催化水楊酸之反應機構之探討
論文名稱(外文):(I) 合成及鑑定以含浸法及溶膠凝膠法合成摻雜氧化鈷之二氧化鈦奈米桿 (II) 以摻雜氧化鈷之二氧化鈦奈米桿光催化水楊酸之反應機構之探討
指導教授:楊鐘松
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:104
語文別:中文
中文關鍵詞:光觸媒二氧化鈦氧化鈷
外文關鍵詞:PhotocatalystTiO2ImpregnationSalicylic acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
本篇論文分別使用溶膠凝膠法摻雜氧化鈷之二氧化鈦光觸媒CoOx-TiO2及含浸法披覆四氧化三鈷之二氧化鈦光觸媒Co3O4-TiO2,並製備一系列不同比例的氧化鈷之二氧化鈦及四氧化三鈷之二氧化鈦光觸媒。並利用粉末 X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡、傅立葉轉換紅外線光譜儀、氮氣吸附脫附測定等儀器來探討在不同過渡金屬披覆比例下產物表面型態的改變以及性質的變化;另從紫外光可見光漫反射光譜中發現經過氧化鈷的摻雜及四氧化三鈷的披覆相較於純二氧化鈦在可見光區域吸收有增強的現象,證實過渡金屬鈷氧化物的添加有助於提高在藍光下的催化活性。
第二部分
過去幾年來許多科學家致力於研究如何利用奈米材料來降解有機汙染物,有許多的半導體材料都具有光催化的能力,但二氧化鈦卻是最被廣泛使用的材料。這是由於二氧化鈦的化學性質不但穩定而且也不具有毒性,重要的是價格便宜。本文中會針對二氧化鈦以兩種方法摻雜過渡金屬鈷的光催化活性進行探討。
本篇論文藉由第一部分分別以溶膠凝膠法及含浸法所製備的CoOx-TiO2光觸媒對水楊酸水溶液進行光催化反應以探討光觸媒的催化活性,並在兩種不同波長紫外光(365 nm)及藍光(456 nm)光源照射下,藉由螢光分光光譜儀偵測反應後水楊酸水溶液剩餘濃度變化來比較各觸媒的催化效率,在UV光及BL光下皆以溶膠凝膠法所合成Ti : Co =1 : 0.01比例的I001C光觸媒的催化活性最好,其催化速率分別為R = -0.0987 min-1及-0.0341 min-1,為純TiO2 Rod催化速率的6倍。
Part 1
In this study, we report a photoactive CoOx-TiO2 catalyst for the degradation of salicylic acid. The CoOx-TiO2 photocatalysts were synthesized by the sol-gel method. The other way, the Co3O4-TiO2 photocatalyst via impregnation followed by calcination at 873K in atmosphere with different Ti/Co mol% is also presented. The catalyst was characterized using XRD, TEM, SEM, XPS, FTIR, ICP-AES, UV-Vis/DR spectroscopy and BET analyzer. In comparison, the UV-vis DRS spectrum of CoOx-TiO2 and Co3O4-TiO2 photocatalysts show a red shift in the absorption band toward visible light regions, which is expected to increase the photoactivity in the visible light regions.
Part 2
In the past few years, many scientists have been researched the photocatalytic degradation of organic pollutants by nanomaterials. There are several semiconductors have photocatalytic properties, titanium dioxide is the most widely used. The chemical properties of titanium dioxide are non-toxicity, low cost and very stability. Here we will try to investigate the photocatalytic degradation of TiO2 that doped cobalt oxide by sol-gel and impregnation methods.
The photocatalytic activity of the materials was studied during the degradation of salicylic acid under the irradiation by UV(365 nm) or Visble light(456 nm). The obtained results suggest the occurrence of a charge transfer between TiO2 and CoOx phases resulting in a relatively high activity of CoOX-TiO2 materials under the irradiation up to 456 nm. The photocatalytic rate of I001C (R=-0.0341 min-1) was 6 times faster than that of TiO2 rods by visble light.
總目錄............ ................................................................................................................ I
圖目錄........... ............................................................................................................... V
表目錄 ......................................................................................................................VIII
【第一部分】
中文摘要 ....................................................................................................................... 2
Abstract. ......................................................................................................................... 3
第一章 緒論 ................................................................................................................. 4
第二章 二氧化鈦的性質與相關文獻之探討 ............................................................. 6
2-1 溶膠凝膠法 ..................................................................................................... 6
2-1-1 金屬烷氧化物的水解與聚合反應 ........................................................ 9
2-2 二氧化鈦的晶體結構與基本性質 ............................................................... 12
2-3 半導體 n/p-type ............................................................................................ 15
第三章 實驗內容及方法 ........................................................................................... 18
3-1 實驗藥品 ....................................................................................................... 18
3-1-1 光觸媒製備藥品 .................................................................................. 18
3-1-2 藥品結構 .............................................................................................. 18
3-2 實驗儀器 ....................................................................................................... 19
II
3-3 光觸媒的製備方法 ....................................................................................... 21
3-3-1 溶膠凝膠法 .......................................................................................... 21
3-3-2 合成四氧化三鈷 .................................................................................. 22
3-3-3 含浸法 .................................................................................................. 22
第四章 光觸媒之性質鑑定與探討 ........................................................................... 25
4-1 P-XRD鑑定與分析 ....................................................................................... 25
4-1-1 未鍛燒之CoOx-TiO2不同披覆量晶型變化 ...................................... 25
4-1-2 鍛燒後觸媒的晶型變化 ...................................................................... 25
4-2 BET比表面積和孔徑鑑定與分析 ............................................................... 32
4-2-1 未鍛燒之CoOx-TiO2不同披覆量比表面積變化 .............................. 35
4-2-2 鍛燒後CoOx-TiO2之表面積變化 ....................................................... 35
4-2-3 含浸法之不同披覆量Co3O4-TiO2之表面積變化 ............................. 36
4-3 固態FT-IR的鑑定 ....................................................................................... 39
4-4 ESCA的鑑定與分析 ..................................................................................... 42
4-5 TEM鑑定與分析 .......................................................................................... 46
4-6 SEM的鑑定與分析 ....................................................................................... 53
4-7 ICP-AES的鑑定與分析 ................................................................................ 56
4-8 UV-vis DRS的鑑定與分析 ........................................................................... 57
第五章 結論 ............................................................................................................... 60
III
【第二部分】
中文摘要 ..................................................................................................................... 65
Abstract .......................................................................................................................66
第一章 緒論 ............................................................................................................... 67
第二章 文獻回顧 ....................................................................................................... 68
2-1 二氧化鈦的光催化機制 ............................................................................... 68
第三章 實驗內容及方法 ........................................................................................... 71
3-1 實驗藥品 ....................................................................................................... 71
3-1-1 光催化反應藥品 .................................................................................. 71
3-1-2 藥品結構 .............................................................................................. 71
3-2 實驗儀器 ....................................................................................................... 72
3-3 光催化反應-吸附水楊酸實驗步驟 ............................................................. 73
3-3-1 水楊酸水溶液配製 .............................................................................. 73
3-3-2 吸附條件測試 ...................................................................................... 73
3-4 光催化水楊酸降解實驗 ............................................................................... 74
3-4-1 紫外光降解水楊酸實驗 ...................................................................... 74
3-4-2 藍光降解水楊酸實驗 .......................................................................... 75
第四章 光觸媒催化活性鑑定與探討 ....................................................................... 78
4-1 光觸媒吸附水楊酸能力之鑑定 ................................................................... 78
IV
4-1-1 吸附條件測試 ...................................................................................... 78
4-1-2 光觸媒之吸附能力鑑定 ...................................................................... 79
4-2 水楊酸自身光催化反應 ............................................................................... 81
4-3 光觸媒催化活性鑑定-催化水楊酸 ............................................................. 82
4-3-1 UV光照下水楊酸催化活性探討 ........................................................ 82
4-3-2 BL光照射下水楊酸催化活性探討 ..................................................... 86
4-4 NMR之鑑定與分析 ...................................................................................... 90
第五章 結論 ............................................................................................................... 95
第一部分
(1) Feng, P.; Bu, X.; Zheng, N. Accounts of Chemical Research 2005, 38, 293.
(2) Hench, L. L.; West, J. K. Chemical Reviews 1990, 90, 33.
(3) Brinker, C. J.; Sherer, G. W. Sol-Gel Science 1990.
(4) Andersson, M.; Österlund, L.; Ljungström, S.; Palmqvist, A. The Journal of Physical Chemistry B 2002, 106, 10674.
(5) Malik, M. A.; Wani, M. Y.; Hashim, M. A. Arabian Journal of Chemistry 2012, 5, 397.
(6) Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Chemical Reviews 2004, 104, 3893.
(7) Deo, G.; Turek, A. M.; Wachs, I. E.; Machej, T.; Haber, J.; Das, N.; Eckert, H.; Hirt, A. M. Applied Catalysis A: General 1992, 91, 27.
(8) Gupta, S. M.; Tripathi, M. Chinese Science Bulletin 2011, 56, 1639.
(9) Mo, S.-D.; Ching, W. Y. Physical Review B 1995, 51, 13023.
(10) Chen, X.; Mao, S. S. Chemical Reviews 2007, 107, 2891.
(11) Diebold, U. Surface Science Reports 2003, 48, 53.
(12) Tseng, L.-T.; Luo, X.; Tan, T. T.; Li, S.; Yi, J. Nanoscale Research Letters 2014, 9, 673.
(13) Shockley, W. Bell System Technical Journal 1949, 28, 435.
(14) Kudo, A.; Miseki, Y. Chemical Society Reviews 2009, 38, 253.
(15) Di Paola, A.; Marcì, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. The Journal of Physical Chemistry B 2002, 106, 637.
(16) Tayade, R. J.; Kulkarni, R. G.; Jasra, R. V. Industrial & engineering chemistry research 2006, 45, 5231.
(17) West, A. R.; John Wiley & Sons Inc Basic solid state chemistry, 1999.
(18) Rahimi, R.; Honarvar Fard, E.; Saadati, S.; Rabbani, M. Journal of Sol-Gel Science and Technology 2012, 62, 351.
(19) Hamadanian, M.; Reisi-Vanani, A.; Majedi, A. Journal of the Iranian Chemical Society, 7, S52.
(20) Patterson, A. Physical review 1939, 56, 978.
(21) Arco, M.; Rives, V. Journal of Materials Science, 21, 2938.
(22) Jung, S.; Kim, J. H. Korean Journal of Chemical Engineering 2010, 27, 645.
(23) Zhou, J.; Zhang, Y.; Zhao, X.; Ray, A. K. Industrial & engineering chemistry research 2006, 45, 3503.
(24) Langmuir, I. Journal of the American Chemical Society 1918, 40, 1361.
(25) Brunauer, S.; Emmett, P. H.; Teller, E. Journal of the American Chemical Society 1938, 60, 309.
62
(26) Brunauer, S.; Emmett, P. H. Journal of the American Chemical Society 1940, 62, 1732.
(27) Sing, K. S. W. In Pure and Applied Chemistry 1985, 57, 603.
(28) Fu, X.; Clark, L. A.; Yang, Q.; Anderson, M. A. Environmental Science & Technology 1996, 30, 647.
(29) Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Langmuir 2001, 17, 2664.
(30) Li, S.; Ye, G.; Chen, G. The Journal of Physical Chemistry C 2009, 113, 4031.
(31) Ivanda, M.; Musić, S.; Popović, S.; Gotić, M. Journal of Molecular Structure 1999, 480, 645.
(32) Sui, R.; Rizkalla, A. S.; Charpentier, P. A. The Journal of Physical Chemistry B 2006, 110, 16212.
(33) Buckley, P.; Giguère, P. A. Canadian Journal of Chemistry 1967, 45, 397.
(34) Soria, J.; Sanz, J.; Sobrados, I.; Coronado, J. M.; Maira, A. J.; Hernández-Alonso, M. D.; Fresno, F. The Journal of Physical Chemistry C 2007, 111, 10590.
(35) Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. Journal of Materials Chemistry 2010, 20, 5301.
(36) Zhou, K.; Zhu, Y.; Yang, X.; Jiang, X.; Li, C. New Journal of Chemistry 2011, 35, 353.
(37) Vasconcelos, D. C. L.; Nunes, E. H. M.; Gasparon, M.; Vasconcelos, W. L. Materials Sciences and Applications 2011, 2, 1375.
(38) George, G.; Anandhan, S. Journal of Sol-Gel Science and Technology 2013, 67, 256.
(39) Barakat, N. A. M.; Khil, M. S.; Sheikh, F. A.; Kim, H. Y. The Journal of Physical Chemistry C 2008, 112, 12225.
(40) Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. The Journal of Physical Chemistry 1996, 100, 3625.
(41) Burke, A. R.; Brown, C. R.; Bowling, W. C.; Glaub, J. E.; Kapsch, D.; Love, C. M.; Whitaker, R. B.; Moddeman, W. E. Surface and Interface Analysis 1988, 11, 353.
(42) Beng Jit Tan, K. J. K., and Peter M. A. Sherwood J. Am. Chem. SOC 1991, 113, 855.
(43) Chuang, T. J.; Brundle, C. R.; Rice, D. W. Surface Science 1976, 59, 413.
(44) Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. Journal of the American Chemical Society 1991, 113, 855.
(45) Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Kasetsart J.(Nat. Sci.) 2008, 42, 357.
63
(46) Suprabha, T.; Roy, H. G.; Thomas, J.; Kumar, K. P.; Mathew, S. Nanoscale research letters 2009, 4, 144.
(47) Dai, S.; Wu, Y.; Sakai, T.; Du, Z.; Sakai, H.; Abe, M. Nanoscale research letters 2010, 5, 1829.
(48) Ha, D.-H.; Moreau, L. M.; Honrao, S.; Hennig, R. G.; Robinson, R. D. The Journal of Physical Chemistry C 2013, 117, 14303.
(49) Potoczna-Petru, D.; Kępiński, L. Catalysis Letters 2001, 73, 41.
(50) Preethi, T.; Abarna, B.; Vidhya, K. N.; Rajarajeswari, G. R. Ceramics International 2014, 40, 13159.
(51) Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z. Materials Science in Semiconductor Processing 2016, 45, 36.
(52) Dvoranová, D.; Brezová, V.; Mazúr, M.; Malati, M. A. Applied Catalysis B: Environmental 2002, 37, 91.
(53) Nagaveni, K.; Hegde, M. S.; Madras, G. The Journal of Physical Chemistry B 2004, 108, 20204.
(54) Fuerte, A.; Hernández-Alonso, M.; Maira, A.; Martinez-Arias, A.; Fernandez-Garcia, M.; Conesa, J.; Soria, J. Chemical Communications 2001, 24, 2718.
(55) Sadanandam, G.; Lalitha, K.; Kumari, V. D.; Shankar, M. V.; Subrahmanyam, M. International Journal of Hydrogen Energy 2013, 38, 9655.
(56) Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y. The Journal of Physical Chemistry B 2006, 110, 20211.
(57) Chen, Y.; Hu, L.; Wang, M.; Min, Y.; Zhang, Y. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 336, 64.
(58) Dai, G.; Liu, S.; Liang, Y.; Luo, T. Applied Surface Science 2013, 264, 157.
(59) Fujihira, M.; Satoh, Y.; Osa, T. Nature 1981, 293, 206.

第二部分
(1) Fujihira, M.; Satoh, Y.; Osa, T. Nature 1981, 293, 206.
(2) Gupta, S. M.; Tripathi, M. Chinese Science Bulletin 2011, 56, 1639.
(3) Hanaor, D. A.; Sorrell, C. C. Journal of Materials science 2011, 46, 855.
(4) Okamoto, K.-i.; Yamamoto, Y.; Tanaka, H.; Tanaka, M.; Itaya, A. Bulletin of The Chemical Society of Japan 1985, 58, 2015.
(5) Gandhi, V.; Mishra, M.; Joshi, P. A. Materials Science Forum 2012, 712, 175.
(6) Linsebigler, A. L.; Lu, G.; Yates, J. T. Chemical Reviews 1995, 95, 735.
(7) Herrmann, J.-M. Catalysis Today 1999, 53, 115.
(8) Tang, S.; He, J.; Zhang, Z. Journal of The Chinese Ceramic Society 2012, 40, 950.
(9) ZHANG Li-Juan, D. L.-B., LI Yan-Chun, ZHANG Xiu-Ling Journal of Inorganic Materials 2014, 29, 801.
(10) Chen, J.-B.; Wang, C.-W.; Ma, B.-H.; Li, Y.; Wang, J.; Guo, R.-S.; Liu, W.-M. Thin Solid Films 2009, 517, 4390.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊