|
[1] S. Aubry. and G. Abramovici. Chaotic trajectories in the standard map. The concept of anti-integrability, Phys. D, 43 (1990), 199-210.
[2] S. J. Aubry. Anti-integrability in dynamical and variational problems. Phys. D, 86 (1995), 284-296.
[3] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey. On Devaney's denition of chaos. The American Mathematical Monthly, 99 (1992), 332-334.
[4] T. H. Chen, W. W. Lin and C. C. Peng. Chaotic orbits for dierentiable maps near anti-integrable limits. Journal of Mathematical Analysis and Applications, 435 (2016), 889-916.
[5] G. Chen, S. B. Hsu, and J. Zhou. Snapback repellers as a cause of chaotic vibration of the wave equation with a van der pol boundary condition and energy injection at the middle of the span. Journal of Mathematical Physics, 39 (1998), 6459-6489.
[6] R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Second Edition. Addison-Wesley, Redwood City, Canada, 1989.
[7] Jerrold E. Marsden Michael J. Homan. Elementary Classical Analysis. Second Edition. W. H. Freeman and Company, New York, 1993.
[8] Ott, Edward. Chaos in Dynamical Systems. Cambridge University Press, (1994).
[9] L. Gardinia, I. Sushkob, V. Avrutinc and M. Schanzc. Critical homoclinic orbits lead to snap-back repellers. Chaos, Solitons and Fractals, 44 (2011), 433-449.
[10] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-schranken. Computing, 4 (1969), 187-201.
[11] U. Kirchgraber and D. Stoer. Transversal homoclinic points of the H^enon map. Annali di Matematica, 185 (2006), 187-204.
[12] Bernd Krauskopf, Hinke M. Osinga, Jorge Galan-Vioque (Eds.). Numerical Continuation Methods for Dynamical Systems. Published by Springer.
[13] Tien-Yien Li and James A. Yorke. Period three implies chaos. The American Mathematical Monthly, 82 (1975), 985-992.
[14] R. E. Moore. A test for existence of solutions for nonlinear systems. SIAM J. Numer. Anal., 4 (1977), 611-615.
[15] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Clis, NJ, 1966.
[16] F. R. Marotto. Snap-back repellers imply chaos in Rn. J. Math. Anal. Appl., 63 (1978), 199 - 223.
[17] F. R. Marotto. On redening a snap-back repeller. Chaos, Solitons and Fractals, 25 (2005), 25-28.
[18] C. Mira, L. Gardini, A. Barugolo and J. C. Cathala. Chaotic Dynamics in Two-Dimensional Noninvertible Map. New Jersey : World Scientic, 1996.
[19] C. Ryan Gwaltney, Youdong Lin, Luke D. Simoni and Mark A. Stadtherr. Interval Methods for Nonlinear Equation Solving Applications. Department of Chemical and Biomolecular Engineering, University of Notre Dame Notre Dame, IN 46556, USA.
[20] D. Sterling and J. D. Meiss. Computing periodic orbits using the anti-integrable limit. Physics Letters A, 241 (1998), 46-52.
[21] S. M. Rump. INTLAB|INTerval LABoratory. In Tibor Csendes, Editor' Developments in Reliable Computing. Kluwer, Dordrecht (1999), 77-104.
[22] Smale, Stephen. Dierentiable dynamical systems. Bull. Amer. Math. Soc., 73 (1967), 747-817.
[23] Endre Suli and David Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003.
|