跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奎瑞
研究生(外文):HUANG, KUEI-JUI
論文名稱:豬腸出血型大腸桿菌的類志賀氏毒素基因表現及鄰近基因之分析
論文名稱(外文):豬腸出血型大腸桿菌的類志賀氏毒素基因表現及鄰近基因之分析
指導教授:余章游郭鴻志郭鴻志引用關係
指導教授(外文):Yu, Chang-youKuo, Hung-Chih
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:獸醫學系研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:水腫病腸出血型大腸桿菌類志賀氏毒素多重抗藥性噬菌體
外文關鍵詞:edema diseaseenterohemorrhagic Escherichia colishiga-like toxinmultiple antibiotic resistancebacteriophage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
豬隻腸出血型大腸桿菌(enterohemorrhagic Escherichia coli,EHEC)可產生類志賀氏毒素II型變異體e型(shiga-like toxin II variant e type,Stx2e),導致水腫病(edema disease)發生,且此病發病快速,致死率又高,造成養豬業莫大的經濟損失,為世界重要豬隻疾病之一。根據國立嘉義大學獸醫學院附設雲嘉南動物疾病診斷中心所分離EHEC菌株之抗微生物藥物感受性試驗結果,可見EHEC對多數抗菌劑具有抗藥性,且某些抗菌劑之抗藥性比率較其他非EHEC之大腸桿菌更為嚴重,因此,本研究欲針對EHEC之多重抗藥性及Stx2e毒素之相關性進行研究及探討。
本研究從2011年至2015年送檢豬隻病例共收集65株EHEC,均由4-10週齡之保育豬所分離。依抗微生物藥物感受性試驗,發現有86%(56/65)的菌株同時對8種以上抗菌劑具有抗藥性,而僅有amikacin及colistin的抗藥性比率較低(分別為8%及22%),並選取其中6種抗菌劑(amoxicillin、cefazolin、ciprofloxacin、enrofloxacin、florfenicol與oxytetracycline)進行輸出幫浦抑制試驗(使用20 µg/mL PAβN,efflux pump inhibitor),結果於ciprofloxacin、enrofloxacin與florfenicol等藥物具有較高比例之菌株其藥物最小抑制濃度(minimal inhibitory concentration)的下降較為顯著,推測EHEC菌株對此三種抗菌劑之抗藥性機制與輸出幫浦有關。此外,以次世代定序分析5株EHEC的染色體全序列,並使用PCR及定序的方式針對stx2e鄰近基因序列進行分析,發現上述基因與噬菌體P27的核苷酸序列相似度為97.5%,且基因組間並無抗藥性基因的存在,因此無法得知stx2e與抗藥性基因間是否相互影響。同時以即時定量聚合酶鏈鎖反應檢測stx2e基因於不同抗菌劑環境中之表現量,結果enrofloxacin可造成EHEC之stx2e基因表現量顯著性下降(p <0.05)。
依據以上結果雖然尚無法確定抗藥性基因及stx2e基因是透過何種模式影響彼此,但可了解EHEC的高抗藥性導致使用單一抗菌劑無法有效治療水腫病,因此,若能同時配合使用可降低stx2e毒素基因表現量之抗菌劑(如enrofloxacin),或許更能有效阻止水腫病之發生。
Enterohaemorrhagic Escherichia coli (EHEC) can cause oedema disease in swine, because EHEC can produce shiga-like toxin 2e (Stx2e). Oedema disease makes huge economic losses in pig industry due to its rapid progression of infection and high fatality rate. It is one of the major pig diseases in the world. According to the results of the antimicrobial susceptibility testing performed in the Animal Disease Diagnostic Center of National Chiayi University, EHEC were found to be resistant to most antibiotics, and the antibiotic resistance rates of EHEC are higher than that of other non-EHEC strains in some antibiotics. Therefore, it was speculated that the high antibiotic resistance rates of EHEC may be associated with Stx2e, and this study was performed to identify the reasons and the impacts.
From 2011 to 2015, 65 enterohaemorrhagic E. coli were collected from clinical cases of swineaged between 4 and 10 weeks. Antimicrobial susceptibility testing of EHEC showed 56 isolates (86 %) were resistant to 8 or moreantimicrobials, and only amikacin and colistin had lower resistance rates. 6 antibiotics (amoxicillin, cefazolin, ciprofloxacin, enrofloxacin, florfenicol, and oxytetracycline) were subsequently used to perform the drug efflux pump inhibition testing with 20 µg/mL PAβN. It was found that the isolates with high antimicrobial resistance rates showed significant decrease in minimal inhibitory concentration for ciprofloxacin, enrofloxacin and florfenicol. It indicated that the antimicrobial resistance was associated with efflux pump. The next-generation sequencing was also employed to analyse the whole sequences of these 5 isolates, and the gene of stx2e and its neighbouring genes were also analysed with the conventional PCR. The result showed that stx2e and neighboring genes had a 97.5 % similarity of nucleotide sequences to the prophage of bacteriophage P27. It was also found that there were no antimicrobial resistance genes in stx2e-flanking regions of EHEC. Therefore, it is not clear yet whether there are interactions between stx2e and antimicrobial resistance genes. Real-time quantitative polymerase chain reaction was used to detect the gene expression of stx2e with different antibiotics, and the result showed enrofloxacin was able to reduce the expression of stx2e gene (p <0.05).
Based on the results in this study, it is still unable to determine the interactions between antimicrobial resistance genes and stx2e gene. But from this study, it was found that it was difficult to treat odema disease with a single antimicrobial in ECHC with high antimicrobial resistance. Based on the result in this study, enrofloxacin is a promising candidate antimicrobial to be clinically administered to prevent the oedema disease due to its reduction of expression of stx2e gene.
摘要......................................................................................................................... i
Abstract.................................................................................................................. iii
目次......................................................................................................................... v
表次......................................................................................................................... ix
圖次......................................................................................................................... x
附錄......................................................................................................................... xi
縮寫表.................................................................................................................... xii
致謝......................................................................................................................... xv
第一章 緒論.................................................................................................... 1
第二章 文獻探討......................................................................................... 3
 第一節 大腸桿菌.......................................................................................... 3
  2.1.1 大腸桿菌介紹........................................................................................ 3
  2.1.2 大腸桿菌之血清型................................................................................ 3
  2.1.3 大腸桿菌之病原型................................................................................ 4
 第二節 腸出血型大腸桿菌....................................................................... 4
  2.2.1 類志賀氏毒素II型變異體e型........................................................... 4
  2.2.2 豬水腫病................................................................................................ 5
   2.2.2.1 F18ab纖毛...................................................................................... 6
   2.2.2.2 離乳後之飲食改變......................................................................... 7
  2.2.3 抗藥性概況............................................................................................ 9
   2.2.3.1 越南................................................................................................. 9
   2.2.3.2 中國................................................................................................. 9
   2.2.3.3 臺灣................................................................................................. 10
 第三節 細菌抗藥性機制及大腸桿菌常見之抗藥性基因............... 10
  2.3.1 細菌抗藥性機制.................................................................................... 10
  2.3.2 乙內醯胺類抗菌劑之抗藥性基因........................................................ 12
  2.3.3 胺基醣苷類抗菌劑之抗藥性基因........................................................ 12
  2.3.4 四環素類抗菌劑之抗藥性基因............................................................ 13
  2.3.5 磺胺類及三甲氧芐氨嘧啶抗菌劑之抗藥性基因................................ 13
  2.3.6 奎諾酮類抗菌劑之抗藥性基因............................................................ 14
  2.3.7 氯黴素類抗菌劑之抗藥性基因............................................................ 15
  2.3.8 台灣大腸桿菌常見之抗藥性基因........................................................ 15
 第四節 輸出幫浦及多重抗藥性.............................................................. 16
  2.4.1 MFS家族............................................................................................... 16
  2.4.2 ABC家族.............................................................................................. 17
  2.4.3 SMR家族.............................................................................................. 17
  2.4.4 RND家族.............................................................................................. 18
  2.4.5 MATE家族........................................................................................... 19
  2.4.6 輸出幫浦抑制劑.................................................................................... 19
 第五節 可動式遺傳因子............................................................................ 19
  2.5.1 吸收破碎之基因片段............................................................................ 20
  2.5.2 質體........................................................................................................ 20
  2.5.3 轉位子及整合子.................................................................................... 20
   2.5.3.1 轉位子............................................................................................. 20
   2.5.3.2 整合子............................................................................................. 21
  2.5.4 噬菌體.................................................................................................... 22
 第六節 抗菌劑對類志賀氏毒素基因表現量之影響........................ 23
 第七節 基因定序.......................................................................................... 24
  2.7.1 傳統定序法............................................................................................ 24
   2.7.1.1 Maxam-Gilbert定序法................................................................... 25
   2.7.1.2 Sanger定序法................................................................................ 25
  2.7.2 次世代定序............................................................................................ 25
   2.7.2.1 Illumina(Solexa)系統................................................................ 26
   2.7.2.2 次世代定序的應用......................................................................... 27
  2.7.3 三代定序................................................................................................ 27
第三章 材料與方法.................................................................................... 29
 第一節 菌株來源.......................................................................................... 29
 第二節 腸出血型大腸桿菌鑑定.............................................................. 29
 第三節 血清型別鑑定…............................................................................ 30
 第四節 抗微生物藥物感受性試驗......................................................... 30
  3.4.1 最小抑菌濃度試驗................................................................................ 30
  3.4.2 輸出幫浦抑制試驗................................................................................ 31
 第五節 stx2e基因及抗藥性基因位於染色體之相對位置.............. 31
 第六節 stx2e基因之鄰近基因分析........................................................ 32
 第七節 抗菌劑對stx2e基因表現量之影響........................................ 32
 第八節 統計分析.......................................................................................... 33
第四章 實驗結果......................................................................................... 34
 第一節 菌株來源.......................................................................................... 34
 第二節 血清型別鑑定................................................................................ 34
 第三節 抗微生物藥物感受性試驗......................................................... 34
  4.3.1 最小抑菌濃度試驗................................................................................ 34
  4.3.2 輸出幫浦抑制試驗................................................................................ 35
 第四節 stx2e基因及抗藥性基因位於染色體之相對位置.............. 35
 第五節 stx2e基因之鄰近基因分析........................................................ 36
 第六節 抗菌劑對stx2e基因表現量之影響........................................ 37
第五章 討論.................................................................................................... 38
 第一節 EHEC好發週齡分析................................................................... 38
 第二節 EHEC血清型別分析................................................................... 38
 第三節 抗藥性分析..................................................................................... 39
  5.3.1 EHEC之抗藥性.................................................................................... 39
  5.3.2 腸道源性及腸道外源性之EHEC抗藥性差異................................... 40
  5.3.3 EHEC之抗藥性基因............................................................................ 40
  5.3.4 輸出幫浦對EHEC抗藥性的影響....................................................... 41
 第四節 stx2e基因之鄰近基因分析........................................................ 42
 第五節 抗菌劑對stx2e基因表現量之影響........................................ 43
第六章 結論.................................................................................................... 45
參考文獻.............................................................................................................. 46
Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 128: 1037-1050, 2007.
Alexa P, Hamrik J, Stourakova K, Konstantinova L, Salajka. Passive immunoprophylaxis of edema disease in weaned pigs. Vet Med (Czech) 49: 447-452, 2004.
Angel Villegas N, Baronetti J, Albesa I, Etcheverría A, Becerra MC, Padola NL, Paraje MG. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms. Toxicol In Vitro 9: 1692-1700, 2015.
Bardiau M, Szalo M, Mainil JG. Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res 41: 57, 2010.
Barker CS, Prüss BM, Matsumura P. Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186: 7529-7537, 2004.
Barth PT, Datta N, Hedges RW, Grinter NJ. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol 125: 800-810, 1976.
Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778: 1814-1838, 2008.
Bennett PM. Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 43: 1-4, 1999.
Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153: S347-S357, 2008.
Beutin L, Krüger U, Krause G, Miko A, Martin A, Strauch E. Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Appl Environ Microbiol 74: 4806-4816, 2008.
Bielaszewska M, Idelevich EA, Zhang W, Bauwens A, Schaumburg F, Mellmann A, Peters G, Karch H. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain. Antimicrob Agents Chemother 56: 3277-3282, 2012.
Bischoff KM, White DG, Hume ME, Poole TL, Nisbet DJ. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. FEMS Microbiol Lett 243: 285-291, 2005.
Biscola FT, Abe CM, Guth BE. Determination of adhesin gene sequences in, and biofilm formation by, O157 and non-O157 Shiga toxin-producing Escherichia coli strains isolated from different sources. Appl Environ Microbiol 77: 2201-2208, 2011.
Bohnert JA, Schuster S, Fähnrich E, Trittler R, Kern WV. Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 59: 1216-1222, 2007.
Bosworth BT, Dean-Nystrom EA, Casey TA, Neibergs HL. Differentiation of F18ab+ from F18ac+ Escherichia coli by single-strand conformational polymorphism analysis of the major fimbrial subunit gene (fedA). Clin Diagn Lab Immunol 5: 299-302, 1998.
Buffet-Bataillon S, Le Jeune A, Le Gall-David S, Bonnaure-Mallet M, Jolivet-Gougeon A. Molecular mechanisms of higher MICs of antibiotics and quaternary ammonium compounds for Escherichia coli isolated from bacteraemia. J Antimicrob Chemother 67: 2837-2842, 2012.
Chan YS, Ng TB. Shiga toxins: from structure and mechanism to applications. Appl Microbiol Biotechnol 100: 1597-1610, 2016.
Chang SK, Lo DY, Wei HW, Kuo HC. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections. J Vet Med Sci 77: 59-65, 2015.
Clinical and Laboratory Standards Institute/NCCLS. Performance standards for antimicrobial disk and dilution susceptibility tests for bacterial isolated from animals approved standard. Wayne, PA: CLSI M02 and M07, 2014.
Costa MM, Drescher G, Maboni F, Weber SS, Schrank A, Vainstein MH, Schrank IS, Vargas AC. Virulence factors, antimicrobial resistance, and plasmid content of Escherichia coli isolated in swine commercial farms. Arq Bras Med Vet Zootec 62: 30-36, 2010.
Cullen ME, Wyke AW, Kuroda R, Fisher LM. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother 33: 886-894, 1989.
Dale JM, Park SF. Genetics of bacteriophages. In: Molecular genetics of bacteria, 5th ed. John Wiley & Sons Ltd, New York, 115-146, 2010.
Daly M, Fanning S. Characterization and chromosomal mapping of antimicrobial resistance genes in Salmonella enterica serotype Typhimurium. Appl Environ Microbiol 66: 4842-4848, 2000.
DebRoy C, Roberts E, Davis M, Bumbaugh A. Multiplex polymerase chain reaction assay for detection of nonserotypable Shiga toxin-producing Escherichia coli strains of serogroup O147. Foodborne Pathog Dis 7: 1407-1414, 2010.
Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog 8: e1002837, 2012.
Duan Q, Zhou M, Zhu X, Bao W, Wu S, Ruan X, Zhang W, Yang Y, Zhu J, Zhu G. The flagella of F18ab Escherichia coli is a virulence factor that contributes to infection in a IPEC-J2 cell model in vitro. Vet Microbiol 160: 132-140, 2012.
Fairbrother JM, Gyles CL. Colibacillosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW. Diseases of swine, 10th ed. John Wiley & Sons Ltd, Ames, 2647-2745, 2012.
Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4: 354-365, 2013.
Fratamico PM, Bhagwat AA, Injaian L, Fedorka-Cray PJ. Characterization of Shiga toxin-producing Escherichia coli strains isolated from swine feces. Foodborne Pathog Dis 5: 827-838, 2008.
Fricke R, Bastert O, Gotter V, Brons N, Kamp J, Selbitz HJ. Implementation of a vaccine against Shigatoxin 2e in a piglet producing farm with problems of Oedema disease: case study. Porcine Health Management 1: 6, 2015.
Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 4: 135, 2013.
Genovese KJ, Anderson RC, Harvey RB, Nisbet DJ. Competitive exclusion treatment reduces the mortality and fecal shedding associated with enterotoxigenic Escherichia coli infection in nursery-raised neonatal pigs. Can J Vet Res 64: 204-207, 2000.
Gonçalves A, Torres C, Silva N, Carneiro C, Radhouani H, Coelho C, Araújo C, Rodrigues J, Vinué L, Somalo S, Poeta P, Igrejas G. Genetic characterization of extended-spectrum beta-lactamases in Escherichia coli isolates of pigs from a Portuguese intensive swine farm. Foodborne Pathog Dis 7: 1569-1573, 2010.
Gottesman MM, Rosner JL. Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Proc Natl Acad Sci USA 72: 5041-5045, 1975.
Griggs DJ, Gensberg K, Piddock LJ. Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother 40: 1009-1013, 1996.
Gyles CL, Fairbrother JM. Escherichia coli. In: Gyles CL, Prescott JF, Songer JG, Thoen CO ed. Pathogenesis of bacterial infections in animals, 4th ed. Backwell publishing, Iowa, 267-308, 2010.
Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 15: 593-600, 1995.
Han W, Liu B, Cao B, Beutin L, Krüger U, Liu H, Li Y, Liu Y, Feng L, Wang L. DNA microarray-based identification of serogroups and virulence gene patterns of Escherichia coli isolates associated with porcine postweaning diarrhea and edema disease. Appl Environ Microbiol 73: 4082-4088, 2007.
Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60: 145-147, 2007.
Heiger DN, Cohen AS, Karger BL. Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J Chromatogr 516: 33-48, 1990.
Helmuth R. Antibiotic Resistance in Salmonella. In: Wray C, Wray A. Salmonella in domestic animals, 1st ed. New York, CABI, 89-106, 2000.
Hostetter SJ, Gallup JM, Cornick NA. Proinflammatory cytokine responses in naturally occurring Shiga-toxin producing Escherichia coli infection in piglets. In: Hostetter SJ. Role of Shiga toxin dissemination and inflammation in the pathogenesis of Shiga toxin-producing Escherichia coli infection. Ames, Iowa, 73-103, 2009.
Hostetter SJ. Role of inflammation and proinflammatory cytokines in the hemolytic uremic syndrome. In: Hostetter SJ. Role of Shiga toxin dissemination and inflammation in the pathogenesis of Shiga toxin-producing Escherichia coli infection. Ames, Iowa, 24-26, 2009.
Hsu SC, Chiu TH, Pang JC, Hsuan-Yuan CH, Chang GN, Tsen HY. Characterisation of antimicrobial resistance patterns and class 1 integrons among Escherichia coli and Salmonella enterica serovar Choleraesuis strains isolated from humans and swine in Taiwan. Int J Antimicrob Agents 27: 383-391, 2006.
Huguet A, Pensec J, Soumet C. Resistance in Escherichia coli: variable contribution of efflux pumps with respect to different fluoroquinolones. J Appl Microbiol 114: 1294-1299, 2013.
Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M; Pathogenic E. coli Working Group in Japan. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol 53: 2427-2432, 2015.
Imberechts H, Greve HD, Schlicker C, Bouchet H, Pohl P, Charlier G, Bertschinger H, Wild P, Vandekerckhove J, Damme JV. Characterization of F107 fimbriae of Escherichia coli 107/86, which causes edema disease in pigs, and nucleotide sequence of the F107 major fimbrial subunit gene, fedA. Infect Immun 60: 1963-1971, 1992.
Iyer A, Barbour E, Azhar E, Ali El Salabi A, Hassan HM, Qadri I, Chaudhary A, Abuzenadah A, Kumosani T, Damanhouri G, Alawi M, Na’was T, Abdel Nour AM, Harakeh S. Transposable elements in Escherichia coli antimicrobial resistance. Adv Biosci Biotechnol 4: 415-423, 2013.
Jacoby G, Cattoir V, Hooper D, Martínez-Martínez L, Nordmann P, Pascual A, Poirel L, Wang M. qnr gene nomenclature. Antimicrob Agents Chemother 52: 2297-2299, 2008.
Jacoby GA. Mechanisms of resistance quinolones. Clin Infect Dis 41: 120 -126, 2005 .
Jansen G, Aktipis CA. Resistance is mobile: the accelerating evolution of mobile genetic elements encoding resistance. J Evol Med 2: Article ID 235873, 2014.
Jellen-Ritter AS, Kern WV. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants selected with a fluoroquinolone. Antimicrob Agents Chemother 45: 1467-1472, 2001.
Johansen BK, Wasteson Y, Granum PE, Brynestad S. Mosaic structure of Shiga-toxin-2-encoding phages isolated from Escherichia coli O157:H7 indicates frequent gene exchange between lambdoid phage genomes. Microbiology 147: 1929-1936, 2001.
Kern WV, Steinke P, Schumacher A, Schuster S, von Baum H, Bohnert JA. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 57: 339-343, 2006.
Kima JC, Hansenb CF, Mullana BP, Pluske JR. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim Feed Sci Technol 173: 3-16, 2012.
Kimmitt PT, Harwood CR, Barer MR. Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 6: 458-465, 2000.
Kleckner N, Chalmers RM, Kwon D, Sakai J, Bolland S. Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. Curr Top Microbiol Immunol 204: 49-82, 1996.
Kobayashi N, Nishino K, Hirata T, Yamaguchi A. Membrane topology of ABC-type macrolide antibiotic exporter MacB in Escherichia coli. FEBS Lett 546: 241-246, 2003.
Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183: 5639-5644, 2001.
Konowalchuk H, Speirs JT, Stavric S. Vero response to a cytotoxin of Escherichia coli. Infect Immun 18: 775-779, 1977.
Konstantinova L, Hamrik J, Kulich P, Kummer V, Maskova J, Alexa P. The effect of intramuscular administration of colistin on the development and course of experimentally induced oedema disease in weaned piglets. Vet Microbiol 128: 160-166, 2008.
Kopecko DJ, Cohen SN. Site specific recA--independent recombination between bacterial plasmids: involvement of palindromes at the recombinational loci. Proc Natl Acad Sci USA 72: 1373-1377, 1975.
Kumar S, Floyd JT, He G, Varela MF. Bacterial antimicrobial efflux pumps of the MFS and MATE transporter families: A review. In: Recent Research Developments in Antimicrobial Agents & Chemotherapy. Research Signpost, Kerala, 1-21, 2013.
Kumar S, Varela MF. Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Méndez-Vilas A. Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Spain, 522-534, 2013.
Kuo HC, Chou CC, Tu C, Gong SR, Han CL, Liao JW, Chang SK. Characterization of plasmid-mediated quinolone resistance by the qnrS gene in Escherichia coli isolated from healthy chickens and pigs. Vet Med 54: 473-482, 2009a.
Kuo HC, Wei HW, Chang CD, Chou CC, Tu C, Liao JW, Chang SK. Molecular detection of florfenicol and chloramphenicol resistance among Escherichia coli isolates from healthy pigs during 2003 to 2007. J Food Drug Anal 17: 217-224, 2009b.
Laine TM, Lyytikäinen T, Yliaho M, Anttila M. Risk factors for post-weaning diarrhoea on piglet producing farms in Finland. Acta Vet Scand 50: 21, 2008.
Lallès JP, Boudry G, Favier C, Le Floc'h N, Luron I, Montagne L, Oswald IP, Pié S, Piel C, Sève B. Gut function and dysfunction in young pigs: physiology. Anim Health Res 53: 301-316, 2004.
Lau SY, Zgurskaya HI. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol 187: 7815-7825, 2005.
Liu J, Keelan P, Bennett PM, Enne VI. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli. J Antimicrob Chemother 63: 423-426, 2009.
Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012: 251364, 2012.
Long F, Rouquette-Loughlin C, Shafer WM, Yu EW. Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob Agents Chemother 52: 3052-3060, 2008.
Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci USA 109: 1691-1696, 2012.
Loś JM, Loś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol 6: 909-924, 2011.
Loynachan AT. Cardiovascular and Hematopoietic Systems. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW. Diseases of swine, 10th ed. John Wiley & Sons Ltd, Ames, 702-737, 2012.
Macleod DL, Gyles CL, Wilcock PB. Reproduction of edema disease of swine with purified Shiga-like toxin-II variant. Vet Pathol 28: 66-73, 1991.
Maheux AF, Bissonnette L, Boissinot M, Bernier JL, Huppé V, Picard FJ, Bérubé É, Bergeron MG. Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and Shigella species in potable water samples. Appl Environ Microbiol 77: 6199-6207, 2011.
Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev 62: 725-774, 1998.
Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N. What can exome sequencing do for you? J Med Genet 48: 580-589, 2011.
Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif) 6: 287-303, 2013.
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet 24: 133-141, 2008.
Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87: 1137-1147, 2005.
Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560-564, 1977.
Maynard C, Fairbrother JM, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, Larivière S, Harel J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob Agents Chemother 47: 3214-3221, 2003.
McCarthy A. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol 17: 675-676, 2010.
McGannon CM, Fuller CA, Weiss AA. Different classes of antibiotics differentially influence shiga toxin production. Antimicrob Agents Chemother 54: 3790-3798, 2010.
Medina A, Horcajo P, Jurado S, De la Fuente R, Ruiz-Santa-Quiteria JA, Domínguez-Bernal G, Orden JA. Phenotypic and genotypic characterization of antimicrobial resistance in enterohemorrhagic Escherichia coli and atypical enteropathogenic E. coli strains from ruminants. J Vet Diagn Invest 23: 91-95, 2011.
Melamede RJ. Automatable process for sequencing nucleotide. Google Patents, 1989.
Meng Q, Bai X, Zhao A, Lan R, Du H, Wang T, Shi C, Yuan X, Bai X, Ji S, Jin D, Yu B, Wang Y, Sun H, Liu K, Xu J, Xiong Y. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol 14: 5, 2014.
Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet 11: 31-46, 2010.
Meunier D, Jouy E, Lazizzera C, Kobisch M, Madec JY. CTX-M-1-type and CTX-M-15-type beta-lactamases in clinical Escherichia coli isolates recovered from food-producing animals in France. Int J Antimicrob Agents 28: 402-407, 2006.
Momtaz H, Dehkordi FS, Hosseini MJ, Sarshar M, Heidari M. Serogroups, virulence genes and antibiotic resistance in Shiga toxin-producing Escherichia coli isolated from diarrheic and non-diarrheic pediatric patients in Iran. Gut Pathog 5: 39, 2013.
Mulvey G, Rafter DJ, Armstrong GD. Potential for using antibiotics combined with a Shiga toxin-absorbing agent for treating O157:H7 Escherichia coli infections. Can J Chem 80: 871-874, 2002.
Naas T, Mikami Y, Imai T, Poirel L, Nordmann P. Characterization of In53, a class 1 plasmid and composite transposon-located isolatio of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol 183: 235-249, 2001.
Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794: 769-781, 2009.
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 23: 243-259, 2014.
Oanh TK, Nguyen VK, Do TN, Goddeeris BM, De Greve H. Escherichia coli strains causing edema disease in northern Vietnam share an identical verotoxin 2e. Trop Anim Health Prod 42: 1797-1804, 2010.
Oka A, Sugisaki H, Takanami M. Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147: 217-226, 1981.
O'Loughlin EV, Robins-Browne RM. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect 3: 493-507, 2001.
Olowe OA, Aboderin BW, Idris OO, Mabayoje VO, Opaleye OO, Adekunle OC, Olowe RA, Akinduti PA, Ojurongbe O. Genotypes and phenotypes of Shiga toxin-producing Escherichia coli (STEC) in Abeokuta, Southwestern Nigeria. Infect Drug Resist 7: 253-259, 2014.
Oram M, Fisher LM. 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob Agents Chemother 35: 387-389, 1991.
Pacheco AR, Sperandio V. Shiga toxin in enterohemorrhagic E. coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol 2: 81, 2012.
Pagès JM, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 11: 382-389, 2005.
Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1-34, 1998.
Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657-686, 2005.
Perelle S, Dilasser F, Grout J, Fach P. Detection by 5'-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases. Mol Cell Probes 18: 185-192, 2004.
Piddock LJ. Multidrug-resistance efflux pumps-not just for resistance. Nat Rev Microbiol 4: 629-636, 2006
Pieper R, Janczyk P, Zeyner A, Smidt H, Guiard V, Souffrant WB. Ecophysiology of the developing total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets. Microb Ecol 56: 474-483, 2008.
Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat 13: 151-171, 2010.
Recktenwald J, Schmidt H. The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage P27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. Infect Immun 70: 1896-1908, 2002.
Reischl U, Youssef MT, Kilwinski J, Lehn N, Zhang WL, Karch H, Strockbine NA. Real-time fluorescence PCR assays for detection and characterization of Shiga toxin, intimin, and enterohemolysin genes from Shiga toxin-producing Escherichia coli. J Clin Microbiol 40: 2555-2565, 2002.
Reznikoff WS. The Tn5 transposon. Annu Rev Microbiol 47: 945-963, 1993.
Reznikoff WS. Tn5 as a model for understanding DNA transposition. Mol Microbiol 47: 1199-1206, 2003.
Roberts MC. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 20: 261-283, 2002.
Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242: 84-89, 1996.
Ruiz E, Sáenz Y, Zarazaga M, Rocha-Gracia R, Martínez-Martínez L, Arlet G, Torres C. qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J Antimicrob Chemother 67: 886-897, 2012.
Rusk N. Torrents of sequence. Nat Methods 8: 44, 2011.
Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J, Sims EH, Jacobs MA, Miller SI, Hoogestraat DR, Cookson BT, McCoy C, Matsen FA, Shendure J, Lee CC, Harkins TT, Hoffman NG. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 8: e65226, 2013.
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463-5467, 1977.
Sato T, Yokota S, Uchida I, Okubo T, Usui M, Kusumoto M, Akiba M, Fujii N, Tamura Y. Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations. Front Microbiol 4: 125, 2013.
Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA, Melton-Celsa AR, Sanchez M, Persson S, O'Brien AD. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50: 2951-2963, 2012.
Sengeløv G, Halling-Sørensen B, Aarestrup FM. Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Vet Microbiol 95: 91-101, 2003.
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 26: 1135-1145, 2008.
Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli isolates from South Korean cattle farms. J Microbiol 52: 785-793, 2014.
Shyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online 15: 4, 2013.
Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 38: 865-891, 2014.
Sikora CW, Turner RJ. SMR proteins SugE and EmrE bind ligand with similar affinity and stoichiometry. Biochem Biophys Res Commun 335: 105-111, 2005.
Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Janečka JE. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet Res 8: 231, 2012.
Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002. Emerg Infect Dis 18: 741-749, 2012.
Tseng M, Fratamico PM, Manning SD, Funk JA. Shiga toxin-producing Escherichia coli in swine: the public health perspective. Anim Health Res Rev 15: 63-75, 2014.
Tseng SP, Wang SF, Kuo CY, Huang JW, Hung WC, Ke GM, Lu PL. Characterization of fosfomycin resistant extended-spectrum β-lactamase-producing Escherichia coli isolates from human and pig in Taiwan. PLoS One 10: e0135864, 2015.
Tuckman M, Petersen PJ, Howe AY, Orlowski M, Mullen S, Chan K, Bradford PA, Jones CH. Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline. Antimicrob Agents Chemother 51: 3205-3211, 2007.
Waddell TE, Coomber BL, Gyles CL. Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can J Vet Res 62: 81-86, 1998.
Wang M, Sahm DF, Jacoby GA, Hooper DC. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother 48: 1295-1299, 2004.
Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1: 147, 2010.
Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51: 9-11, 2003.
Wu JJ, Ko WC, Wu HM, Yan JJ. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital, 1999-2005. J Antimicrob Chemother 61: 1234-1239, 2008.
Yamanaka H, Kobayashi H, Takahashi E, Okamoto K. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 190: 7693-7698, 2008.
Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51: 3354-3360, 2007.
Yan JJ, Hong CY, Ko WC, Chen YJ, Tsai SH, Chuang CL, Wu JJ. Dissemination of blaCMY-2 among Escherichia coli isolates from food animals, retail ground meats, and humans in southern Taiwan. Antimicrob Agents Chemother 48: 1353-1356, 2004a.
Yan JJ, Wu JJ, Ko WC, Tsai SH, Chuang CL, Wu HM, Lu YJ, Li JD. Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother 54: 1007-1012, 2004b.
Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 34: 1271-1272, 1990.
Youenou B, Favre-Bonté S, Bodilis J, Brothier E, Dubost A, Muller D, Nazaret S. Comparative genomics of environmental and clinical Stenotrophomonas maltophilia strains with different antibiotic resistance profiles. Genome Biol Evol doi:10.1093/gbe/evv161, 2015.
Yuan J, Xu X, Guo Q, Zhao X, Ye X, Guo Y, Wang M. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J Antimicrob Chemother 67: 1655-1659, 2012.
Zhang Y, LeJeune JT. Transduction of blaCMY-2, tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. Typhimurium. Vet Microbiol 129: 418-425, 2008.
Zhang Z, Saier MH Jr. A novel mechanism of transposon-mediated gene activation. PLoS Genet 5: e1000689, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top