跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱中敏
研究生(外文):Chung-Min Chu
論文名稱:MgZnO/ZnO高電子移動率電晶體
論文名稱(外文):MgZnO/ZnO高電子移動率電晶體
指導教授:黃俊達黃俊達引用關係
指導教授(外文):Jun-Dar Hwang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:電子物理學系光電暨固態電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:104
語文別:中文
論文頁數:53
中文關鍵詞:氧化鋅氧化鋅鎂二維電子氣場效電晶體
外文關鍵詞:ZnOMgZnORF-sputter2DEGMOSFET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗在藍寶石基板(Al2O3)上利用射頻濺鍍系統成長氧化鋅(ZnO)與氧化鋅鎂(MgZnO)形成二維電子氣體結構以及金屬-半導體(金-半)與金屬-氧化物-半導體(金-氧-半)兩種具二維電子氣體結構的場效電晶體。二維電子氣體結構藉由改變MgZnO的厚度並在氧化鋅(ZnO)上四點的鍍鋁(Al)當作電極並使用霍爾量測二維電子氣體的特性,元件結構是在氧化鋅層上鍍上兩端黃金當作源極與汲極,而MgZnO表面鍍上黃金當作閘極(金-半結構)。至於金-氧-半結構則使用爐管在氧化鋅鎂層上氧化不同厚度的氧化鎂並鍍上黃金(Au)當作閘極(gate)。
二維電子氣體結構固定下層氧化鋅厚度(300 nm),藉由改變上層氧化鋅鎂厚度(40、60、80、100、120nm),越厚的氧化鋅鎂有越高的載子濃度(-2.27×〖10〗^19 〖cm〗^(-3))以及載子遷移率(17.52〖cm〗^2/V-s)。在2DEG結構的MOSFET,氧化MgO的時間越短,場效電晶體不容易進入飽和,反之氧化越久的MgO場效電晶體越容易進入飽和狀態。在VG 為0V時的互導gm最大,且隨閘極逆向偏壓的增加而減少;對於沒有氧化MgO層的FET(金-半結構)約在1.23×〖10〗^(-3)ms/mm,有氧化5分鐘MgO(金-氧-半結構)約在1.16×〖10〗^(-4)ms/mm,有氧化10分鐘MgO約在9.02×〖10〗^(-5)ms/mm,。臨界電壓VT在沒有MgO氧化層的FET為-72 V,而10分鐘MgO氧化層的FET,可以降低VT至-11 V。在沒有MgO氧化層的Mobility最大(1.27〖cm〗^2/V-s),有MgO氧化層的Mobility會變小。
In this experiment, the ZnO and MgZnO layers were deposited on sapphire substrate to form two-dimensional electron gas (2DEG) structure. Also the metal-semiconductor (M-S) and metal-oxide-semiconductor (MOS) field-effect transistor (FET) were fabricated. For 2DEG structure, the bottom ZnO layer is 300 nm and the top MgZnO layer with various thicknedd from 40 to 120 nm. Hall measurement shows that the thickest MgZnO layer (120 nm) demonstrates the highest carrier concentration (-2.27×〖10〗^19 〖cm〗^(-3)) and mobility (17.52〖cm〗^2/V-s).
The MOSFET with thin MgO layer is not easy to be saturated, however the MOSFET with thick MgO layer is easy to be saturated. The maximum transconductance gm occurs at VG=0V and decreases with increasing in VG. The gm of M-S FET is 1.23×〖10〗^(-3)ms/mm and the MOSFET with 5-min and 10-min are 1.16×〖10〗^(-4)ms/mm and 9.02×〖10〗^(-5)ms/mm, respectively. The threshold voltage VT of M-S FET is as high as -72 V and the VT is reduced to -11 V for the MOSFET with 10-min MgO layer. The M-S FET has maximum mobility of 1.27〖cm〗^2/V-s and the mobility is reduced in MOSFET.
摘要 I
Abstract III
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 原理簡介 4
2.1 濺鍍原理 4
2.2 二維電子氣的形成及特性 7
2.3 金氧半場效電晶體之工作原理 9
2.4 霍爾效應 11
2.5 電流-電壓量測 13
第三章 實驗製作與量測分析 14
3.1 實驗流程 14
3.2 元件製作 15
3.2.1 清洗基板 15
3.2.2 二維電子氣體結構製作 16
3.2.3 具二維電子氣體的場效電晶體結構製作 18
3.3 儀器操作流程 20
3.3.1 濺鍍流程 20
3.3.2 元件鋁電極蒸鍍及退火 22
3.3.3 元件金電極蒸鍍 24
3.4 元件及結構 26
3.5 霍爾量測 27
第四章 實驗結果與討論 28
4.1 霍爾量測分析 29
4.1.1 霍爾量測 29
4.1.2 霍爾量測結果 30
4-2 元件分析 33
4.2.1 I-V電流電壓量測 33
4.2.2 元件I-V電流電壓曲線分析 35
4.2.3 電導對閘極電壓的關係(gm-VGS)特性 38
4.2.4 臨界電壓 (VT) 41
4.2.5 I_ON/I_OFF比值 43
4.2.6 μ_(SAT ) μ_FE 45
第五章 結論 48
參考文獻 49
[1] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices.” J. Appl. Phys., vol. 98, pp.041301 (2005).
[2] S.J. Pearton, D.P. Norton, K.Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in materials science, vol. 50, pp.293-340 (2005).
[3] S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, J.D. Budai. “Advances in wide bandgap materials for semiconductorSpintronics,” Materials Science and Engineering R, vol. 40, pp.137–168 (2003).
[4] H.L. Hartnaget, A.L. Dawar, A.K. Jain, C.Jagadish, “Semiconducting Transparent Thin Films, ” IOP pulishing Ltd, vol. 1 (1995).
[5] H. Sato, T. Minami, Y. Tamura, S. Sakata, T. Mori, N. Ogawa, “Aluminium content dependence of milky transparent conducting ZnO:Al films with textured surface prepared by d.c. magnetron sputtering,” Thin Solid Films, vol. 246, pp.86 (1994).
[6] S. Majumdar , S. Chattopadhyay , P. Banerji , “Electrical characterization of p-ZnO/p-si heterojunction,” Applied Surface Science, vol. 255 pp.6141-6144 (2009).
[7] F. S. Hickernell, “dc triode sputtered zinc oxide surface elastic wave transducers,” J. Appl. Phys., vol. 44, pp.1061 (1973).
[8] R.R.A. Gvms, S. Makrimichalou, A.S.Holmes, High-speed optical signal processing potential of grating-coupled waceguide filters,” Appl. Opt., vol. 30, pp.3762 (1991).
[9] Yiqun Shen, Wei Hu, Tingwei Zhang, Xiaofeng Xu, Jian Sun, Jiada Wu, Zhifeng Ying, Ning Xu, “Arsenic-doped ZnO films fabricated on silicon substrates by pulsed laser ablation,” Materials Science and Engineering: A, vol. 473, pp.201-205 (2008).
[10] W.F. Liu, et al. “Electroluminescence from a ZnO homojunction device grown by pulsed laser deposition,” Solid state Commun, vol. 142, pp.655 (2007).
[11] C.G. Granqvist, “Window coatings for the future,” Thin Solid Films, vol. 193–194, pp.730-741 (1990).
[12] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, pp.7983 (1996).
[13] K. W. Liu, D. Z. Shan, J. Y. Zhang, B. Yao et al, “Zn0.76OMg0.24 homojunction photodiode for ultraviolet detection,”Appl. Phys. Lett., vol. 91, pp.201106 (2007).
[14] J. Hu and R. G. Gorden, “Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition,” J. Appl. Phys., vol. 71, pp.880 (1992).
[15] M. T. Young and S. D. Kenu, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films,” Thin Solid Films, vol. 410, pp.8 (2002).
[16] F. Furusaki, J. Takahashi and K. Kodaira, “Preparation of ITO Thin Films by Sol-Gel Method.” J. of the Japan Ceramic Society, vol. 102, pp.200 (1994).
[17] Chen, L.J.; Zhong Lin Wang; Hau He, Jr.; Shu Te Ho; Tai Bor Wu, “Electrical and photoelectrical performances of nano-photodiode based on ZnO nanowires,” Chemical Physics Letters, vol. 435, pp.119-122 (2007).
[18] Hongxia Qi, Qingshan Li, Caifeng Wang, Lichun Zhang, Lei Lv, “Effects of oxygen pressure on n-ZnO/p-Si heterojunctions fabricated using pulsed laser deposition,” Vacuum, vol. 81, pp.943-946 (2007).
[19] T. L. Tansley and S. J. T. Owen, “Conductivity of Si‐ZnO p‐n and n‐n heterojunctions,” J. Appl. Phys., vol. 55, pp.454 (1984).
[20] M. S. Wu, A. Azuma, T. Shiosaki and A. Kawabata, “Low-loss ZnO optical waveguides for SAW-AO applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 36, pp.442-445 (1989).
[21] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Materials Letters, vol. 55, pp.67 (2002).
[22] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering,” Vacuum, vol. 59, pp.538 (2000) .
[23] Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering,” Thin Solid Films, vol. 199, pp.223 (1991).
[24] Perkowitz. Sidney. “Optical Characterization of Semiconductors,” New York: Academic press (1993).
[25] Huai-An Chin, I-Chun Cheng, Chih-I Huang, Yuh-Renn Wu, Wen-Sen Lu, Wei-Li Lee, Jian Z. Chen, Kuo-Chuang Chiu, and Tzer-Shen Lin, “Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process”, : Appl Phys 108, 054503 (2010)
[26] W. C. Mitchel, G. J. Brown, Ikai Lo, Said Elhamri, Mohamed Ahoujja, K. Ravindran, R. S. Newrock, Manijeh Razeghi, and Xiaguang He, “Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells ”, Appl. Phys. Lett., Vol. 65, pp. 1578-1580, 1994.
[27] C. Weisbuch and B. Vinter, “Quantum semiconductor structures, fundamentals and application”, p. 49 (Academic Press, Ins., San Diego, 1991)
[28] Chia-Sen Chang, Hsin-Ying Lee, “Investigation of two-dimensional electron gas in ZnMgO/ZnO heterostructures grown by Atomic Layer Deposition” National Cheng Kung University Tainan, Taiwan, R.O.C. Thesis for Master of Science (2011).
[29] S. M. Sze, “Physics of semiconductor device,” New York: John Wiley & Sons, second ed., 1981.
[30] D. A. Neamen, “Semiconductor physics and devices,” Mc Graw Hill, (2003).
[31] 施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, 2008.
[32] Han-Wei Tsai, Ching-Ting Lee, “Investigation of Silicon-CarbideMetal-Oxide-Semiconductor Field-Effect Transistors Fabricated by the Plasma Enhanced Chemical Vapor Deposition System,” National Cheng Kung University Tainan, Taiwan, R.O.C. Thesis for Master of Science (2012)
[33] Chia-Sen Chang, Hsin-Ying Lee, “Investigation of two-dimensional electron gas in ZnMgO/ZnO heterostructures grown by Atomic Layer Deposition” National Cheng Kung University Tainan, Taiwan, R.O.C. Thesis for Master of Science (2011).
[34] Daqian Ye, Zengxia Mei,, Huili Liang1, Junqiang Li, Yaonan Hou, Changzhi Gu, Alexander Azarov, Andrej Kuznetsov, Wen-Chiang Hong, Yicheng Lu, and Xiaolong Du, “Enhancement-mode ZnO/Mg0.5Zn0.5OHFET on Si” Appl Phys 47 255101 (2014)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊