(3.238.88.35) 您好!臺灣時間:2021/04/10 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁武湘
研究生(外文):Wu-Xiang Weng
論文名稱:基於角度與加速度變化之跌倒偵測
論文名稱(外文):Fall Detection Based On Angular Variation and Acceleration
指導教授:羅壽之
指導教授(外文):Shou-Chih Lo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
論文頁數:52
中文關鍵詞:跌倒偵測加速度感測器角度
外文關鍵詞:fall detectionacceleration sensorangle
相關次數:
  • 被引用被引用:4
  • 點閱點閱:515
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
人口高齡化是世界趨勢,如何讓高齡者維持健康成為重要議題。其中跌倒造成的傷害可能會使高齡者暫時失去求救能力,而無法即時獲得醫療資源,近一步造成傷勢惡化,復原期間拉長。更有部分高齡者因跌倒受傷後害怕再次跌倒而自我設限,使身體機能和生活品質下降,生病甚至死亡比例增加。
因此,本研究致力於自動檢測跌倒並即時求救,以容易取得的手機加速度感應器做為資料來源,轉換為角度序列,並利用以計算漢明距離為基礎的相似度演算法,在Android手機上實做跌倒偵測程式。

Population ageing is a major global trend; thus, how to maintain older people’s health in their prolonged lives has become a significant issue. Above all, the injuries caused by falls can make older people temporarily unable to call for help and not obtain emergency medical care, which will worsen their injuries and they will need more time to recover. Furthermore, some older people may fear to fall again and then put unnecessary limits on themselves, leading to the weakened functions of the body, lower quality of life, getting ill more easily, and even death.
For all these reasons, this article works on how to automatically sense a fall and make a call for help at once. This paper practically examines a mobile app of fall detection on Android smartphone. Collecting data from smartphone embedded 3-axis accelerometer sensor, this study converts the data into angular sequences and processes them with Similarity Algorithms based on Hamming distance.

Abstract iii
摘要 v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 論文架構 4
第二章 相關研究背景 5
2.1跌倒偵測感測器 5
2.2 跌倒動作分析 9
2.3 跌倒偵測系統特性 10
2-2-1 系統流程 10
2-2-2 特徵選取 11
2-2-3 跌倒演算法 11
2-2-3 跌倒模擬 13
2-2-4 準確率評估方式 13
2.4 相關研究實例 14
第三章 跌倒偵測系統設計 21
3.1 系統平台與開發環境 21
3.2 系統流程與研究方法 24
3-2-1 訊號處理模組 25
3-2-2 跌倒風險序列取樣模組 26
3-2-3 跌倒角度變化模板建立 35
3-2-4 角度變化相似度計算模組 36
3-2-5 加速度計算模組 38
第四章 跌倒偵測系統展示與實驗 41
4.1 系統實作展示 41
4.2 相關實驗設計 43
4.3 相關實驗數據與討論 45
第五章 結論與展望 47
5.1 結論 47
5.2 未來展望 48
參考文獻 49

[1] 「中華民國人口推計(103至150年)」報告。
<http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=9999>
[2] Concise Report on the World Population Situation 2014, <http://www.un.org/en/development/desa/population/publications/trends/concise-report2014.shtml>
[3] WHO Global Report on Falls Prevention in Older Age,
<http://www.who.int/ageing/projects/falls_prevention_older_age/en>
[4] 係“驚”吔!全臺行動族群半年內激增170萬人…。
<http://www.iii.org.tw/m/News-more.aspx?id=1566>
[5] 方維倫、孫志銘、王傳蔚、蔡明翰。CMOS MEMS 微型加速度計。科儀新知第165期,6–18 頁,2008 年 8 月。
[6] 黃連進、陳建榮。基於智慧型手機之跌倒偵測與三維計步器之設計與實現。2013全國計算機會議論文
[7] Y. Shin and B.C. Wünsche, “A smartphone-based golf simulation exercise game for supporting arthritis patients,”in Proc. IEEE IVCNZ Conf.,pp. 459-464,Nov. 2013.
[8] S. A.Hoseinitabatabaei and A. Gluhak and R. Tafazoll,“A survey on smartphone-based systems for opportunistic user context recognition,”ACM Comput. Surv., vol.45, no.3,2013
[9] Sensors Overview : Sensor Coordinate System
<http://developer.android.com/guide/topics/sensors/sensors_overview.html>
[10] 劉星宏。利用kinect做室內跌倒事件之偵測。碩士論文, 桃園: 國立中央大學資訊工程研究所, 2012。
[11] C.W. Luchies, N.B. Alexander, A. B. Schultz, J. Ashton-Miller, “
Stepping responses of young and old adults to postural disturbances: kinematics ,”J Am Geriatr Soc, 42, pp. 506–512, 1994.
[12] A. K. Bourke, P. van de Ven, M. Gamble, R. O’Connor, K. Murphy, E. Bogan, E. McQuade, P. Finucane, G. O’Laighin and J. Nelson, “Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities,” J. Biomech., vol. 43, pp.3051-3057, 2010.
[13] Y. W. Bai, S. C Wu, and C. L Tsai,“Design and implementation of a fall monitor system by using a 3-axis accelerometer in a smart phone,” Consumer Electronics, IEEE Transactions on 58.4 : 1269-1275, 2012.
[14] P. Jantaraprim, P. Phukpattaranont, C. Limsakul .and B. Wongkittisuksa, "Fall Detection for the elderly using a Support Vector Machine." International Journal of Soft Computing and Engineering 2.1: 484-490, 2012.
[15] G. Rescio, A. Leone, and P. Siciliano, "Support Vector Machine for tri-axial accelerometer-based fall detector." Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on. IEEE, 2013.
[16] Analytics: The Machine Learning Advantage
<https://yottamine.com/machine-learning-svm>
[17] O. Ojetola, E. Gaura,and J. Brusey, "Fall detection with wearable sensors--safe (Smart Fall Detection)." Intelligent Environments (IE), 2011 7th International Conference on. IEEE, 2011.
[18] M. Kangas, I. Vikman, L. Nyberg, R. Korpelainen,and T. Jämsä, "Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects." Gait & posture 35.3: 500-505, 2012.
[19] M. J. Mathie, N. H. Lovell, A.C.F. Coster, and B.G. Celler “Determining Activity Using a Triaxial Accelerometer,” Proc. Journal of Engineering in Medicine and Biology Conf. on Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES, Vol. 41, Oct. 2002.
[20] Y. Cao, Y. Yang, and W. Liu, “E_FallD: A Fall Detection System using Android-based Smartphone,” Proc. IEEE Int. Conf. on Fuzzy Systems and Knowledge Discovery, pp. 1509-1513, May 2012.
[21] Y. Shi, Y. Shi, and X. Wang. "Fall Detection on Mobile Phones Using Features from a Five-phase Model," 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing.
[22] S. L. Hsieh, C. C. Chen, S. H. Wu and T. W. Yue ,” A wrist -worn fall detection system using accelerometers and gyroscopes,” in Networking, Sensing and Control (ICNSC), 2014 IEEE 11th International Conference on, pp. 518 – 523, April 2014.
[23] S. Mehner, R. Klauck, and H. Koenig, "Location-independent fall detection with smartphone." Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments. ACM, 2013.
[24] E. Horta, I. Lopes, J. J. Rodrigues, and M. L. Proenca, “A mobile health application for falls detection and biofeedback monitoring," IEEE International Conference on e-Health Networking, Application & Services (IEEE Healthcom 2013), pp. 2299-2310, 2013.
[25] W. Wibisono, D. N. Arifin, B. A. Pratomo, T. Ahmad and R. M Ijtihadie ,”Falls Detection and Notification System using Tri-Axial Accelerometer and Gyroscope Sensors of a Smartphone,” Proceedings of the 2013 Conference on Technologies and Applications of Artificial Intelligence (TAAI), Taipei, Taiwan, 6–8 December 2013; pp. 382–385.
[26] S. Rakhecha,” Reliable and Secure Body Fall Detection Algorithm in a Wireless Mesh Network,” A Thesis for the Degree of Master,NY: Department of Computer Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, May.2013.
[27] W. C. Chou, W. Y. Lin, M.Y. Lee, and K.F. Lei, “Design and assessment of a real-time accelerometer-based lying-to-sit sensing system for bed fall prevention," 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, Oct. 2013.
[28] D. Chen, W. Feng,Y. Zhang, Y.,X. Li, and T. Wang, “A wearable wireless fall detection system with accelerators,” In Proceedings of the International Conference on Robotics and Biomimetics, 2011.
[29] M. Vallejo, C.V. Isaza,and J.D. Lopez, "Artificial neural networks as an alternative to traditional fall detection methods," Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, 2013.
[30] 鐘哲明,“加速度動作辨識系統之研究及應用,”碩士論文, 台南: 成功大學工程科學系, 2008.
[31] M. R. Sie, and S. C. Lo,” The design of a smartphone-based fall detection system,” Proc. IEEE Int. Conf. on Networking, Sensing and Control, pp. 456-461, Apr. 2015.
[32] 陳嘉玫, 楊佳蕙, 賴谷鑫,”基於結構相似度之惡意程式原始碼分類研究,” 電子商務學報, 15:4期, Dec.2013.
[33] P. Kostopoulos, T. Nunes, K. Salvi, M. Deriaz, and J. Torrent, “Increased fall detection accuracy in an accelerometer-based algorithm considering residual movement,” in International Conference on Pattern Recognition Applications and Methods, 2015.
[34] Y. He, Y. Li,and S.O. Bao, "Fall Detection by built-in tri-accelerometer of smartphone." Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on. IEEE, 2012.
[35] A. Sorvala, E. Alasaarela, H. Sorvoja, and R. Myllylä, "A two-threshold fall detection algorithm for reducing false alarms." Medical Information and Communication Technology (ISMICT), 2012 6th International Symposium on. IEEE, 2012.
[36] F. Sposaro, and G. Tyson, "iFall: an Android application for fall monitoring and response," Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 2009.
[37] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti, " A high reliability wearable device for elderly fall detection," IEEE Sensors J. 15, 4544–4553, 2015.
[38] R. Y. W. Lee and A. J. Carlisle, "Detection of falls using accelerometers and mobile phone technology," Age and Ageing, pp. 1-7, 2011.
[39] Ojetola, O.; Gaura, E.I.; Brusey, J. Fall detection with wearable sensors–SAFE (Smart FallDEtection). In Proceedings of the 7th International Conference on Intelligent Environments,Nottingham, UK, 25–28 July 2011; pp. 318–321.
[40] ANDROID DEVICE SPECIFICATIONS DATABAS- HTC-One X
<http://specdevice.com/showdevice.php?iid=170&lang=en>
[41] ANDROID DEVICE SPECIFICATIONS DATABAS- Samsung-GT-I9500
<http://specdevice.com/showspec.php?id=7565-1021-ffff-ffffb9ed8529&lang=en>
[42] L. C. Feng, S. Y. Chang, H.C. Chao,and Y. M. Huang, "Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling," Sensors Journal, IEEE 11.3 : 763-770, 2011.
[43] Farseeing:Data Sharing Policy
<http://farseeingresearch.eu/2015/03/07/data-sharing-policy/>

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔