(3.235.41.241) 您好!臺灣時間:2021/04/15 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭凱文
研究生(外文):Kai-Wen Cheng
論文名稱:非同質細胞神經網路之拓撲熵的存在性
論文名稱(外文):On the existence of topological entropy of inhomogeneous cellular neural networks
指導教授:班榮超
指導教授(外文):Jung-Chao Ban
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
論文頁數:13
中文關鍵詞:非同質性細胞神經網路系統拓樸熵p product specification
外文關鍵詞:inhomogeneous cellular neural networksentropyp product specification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究非同質細胞神經網路系統的複雜性(拓樸熵),我們將針對週期性非同質性細胞神經網路系統之的其存在性的充分條件。具體來說,我們定義週期性非同質細胞神經網路系統所誘導的鄰接矩陣組是p product specification條件下其拓樸熵的存在性。
In this investigation we study the topological entropy htop(M) (defined later) of an inhomogeneous cellular neural networks (ICNNs, for short) with period p. The sufficient conditions for the existence of the htop(M) are given in this paper. More precisely, the p product specification (P.P.S., for short) of a collection of matrices
M(p) = {Mi}p i=1 (defined later) induced form the ICNN with period p ensures the existence of htop(M(p)).
Contents
1 Introduction 1
2 Preliminaries 3
3 Main results 5
4 Acknowledgement 9
[1] Paolo Arena, Luigi Fortuna, Mattia Frasca, and C Marchese. Multi-template
approach to artificial locomotion control. In Circuits and Systems, 2001.
ISCAS 2001. The 2001 IEEE International Symposium on, volume 3, pages
37–40. IEEE, 2001.
[2] J Ban, S Lin, Y Lin, et al. Patterns generation and spatial entropy in twodimensional
lattice models. Asian Journal of Mathematics, 11(3):497, 2007.
[3] Jung-Chao Ban. Neural network equations and symbolic dynamics. International
Journal of Machine Learning and Cybernetics, 6(4):567–579, 2015.
[4] Jung-Chao Ban and Chih-Hung Chang. Inhomogeneous lattice dynamical
systems and the boundary effect. Boundary Value Problems, 2013(1):249,
2013.
[5] Jinde Cao and Jinling Liang. Boundedness and stability for cohen–grossberg
neural network with time-varying delays. Journal of Mathematical Analysis
and Applications, 296(2):665–685, 2004.
[6] Shui-Nee Chow, John Mallet-Paret, and Erik S Van Vleck. Pattern formation
and spatial chaos in spatially discrete evolution equations. Random and
Computational Dynamics, 4(2):109–178, 1996.
[7] Leon O. Chua and L. Yang. Cellular Neural Networks. EECS Department,
University of California, Berkeley, 1987.
[8] Leon O Chua and Lin Yang. Cellular neural networks: Applications. Circuits
and Systems, IEEE Transactions on, 35(10):1273–1290, 1988.
[9] Pier Paolo Civalleri, Marco Gilli, and Luciano Pandolfi. On stability of cellular
neural networks with delay. IEEE transactions on circuits and systems.
1, Fundamental theory and applications, 40(3):157–165, 1993.
[10] G Costantini, D Casali, and M Carota. A pattern classification method based
on a space-variant cnn template. In Cellular Neural Networks and Their
Applications, 2006. CNNA’06. 10th International Workshop on, pages 1–5.
IEEE, 2006.
[11] Michael Doebeli, Christoph Hauert, and Timothy Killingback. The evolutionary
origin of cooperators and defectors. Science, 306(5697):859–862,
2004.
[12] Michael Doebeli and Timothy Killingback. Metapopulation dynamics with
quasi-local competition. Theoretical population biology, 64(4):397–416,
2003.
[13] Hubert Harrer, Josef Nossek, et al. Skeletonization: A new application for
discrete-time cellular neural networks using time-variant templates. In Circuits
and Systems, 1992. ISCAS’92. Proceedings., 1992 IEEE International
Symposium on, volume 6, pages 2897–2900. IEEE, 1992.
[14] Christoph Hauert and Michael Doebeli. Spatial structure often inhibits the
evolution of cooperation in the snowdrift game. Nature, 428(6983):643–646,
2004.
[15] Yuan-Wen Hu. On the zero topological entropy of inhomogeneous cellular
neural networks. National Dong Hwa University, 2014.
[16] Jonq Juang and Song-Sun Lin. Cellular neural networks: Mosaic pattern and
spatial chaos. SIAM Journal on Applied Mathematics, 60(3):891–915, 2000.
[17] Timothy Killingback, Gregory Loftus, and Bala Sundaram. Competitively
coupled maps and spatial pattern formation. Physical Review E,
87(2):022902, 2013.
[18] Hyongsuk Kim, Hongrak Son, Tam´as Roska, and Leon O Chua. Optimal
path finding with space-and time-variant metric weights via multi-layer cnn.
International journal of circuit theory and applications, 30(2-3):247–270,
2002.
[19] Yongkun Li. Existence and stability of periodic solutions for cohen–
grossberg neural networks with multiple delays. Chaos, Solitons & Fractals,
20(3):459–466, 2004.
[20] Song-Sun Lin and Chih-Wen Shih. Complete stability for standard cellular
neural networks. International Journal of Bifurcation and Chaos,
9(05):909–918, 1999.
[21] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.
[22] Tam´as Roska, WAH WU CHAI, Marco Balsi, and Leon O Chua. Stability
and dynamics of delay-type general and cellular neural networks. IEEE
Transactions on circuits and systems. I: Fundamental theory and applications,
39(6):487–490, 1992.
[23] Tamas Roska and Leon Chua. Cellular neural networks with nonlinear and
delay-type template elements. In Cellular Neural Networks and their Applications,
1990. CNNA-90 Proceedings., 1990 IEEE International Workshop
on, pages 12–25. IEEE, 1990.
[24] Tam´as Roska, Chai Wah Wu, and Leon O Chua. Stability of cellular neural
networks with dominant nonlinear and delay-type templates. Circuits and
Systems I: Fundamental Theory and Applications, IEEE Transactions on,
40(4):270–272, 1993.
[25] Chih-Wen Shih. Complete stability for a class of cellular neural networks.
International Journal of Bifurcation and Chaos, 11(01):169–177, 2001.
[26] Chung-Yu Wu and Chiu-Hung Cheng. A learnable cellular neural network
structure with ratio memory for image processing. Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on, 49(12):1713–
1723, 2002.
[27] Tao Yang and L-B Yang. The global stability of fuzzy cellular neural network.
IEEE transactions on circuits and systems. 1, Fundamental theory
and applications, 43(10):880–883, 1996.
[28] MYokozawa, Y Kubota, and T Hara. Effects of competition mode on spatial
pattern dynamics in plant communities. Ecological Modelling, 106(1):1–16,
1998.
[29] M Yokozawa, Y Kubota, and T Hara. Effects of competition mode on the
spatial pattern dynamics of wave regeneration in subalpine tree stands. Ecological
modelling, 118(1):73–86, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔