(3.237.20.246) 您好!臺灣時間:2021/04/17 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張哲瑋
研究生(外文):Che-Wei Chang
論文名稱:複合“奈米金/聚苯胺(快混法)”- 合成與檢測
指導教授:黃淑絹黃淑絹引用關係
指導教授(外文):Shu-Chuan Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
論文頁數:53
中文關鍵詞:聚苯胺奈米金複合材料
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
奈米金(5或20 nm) 與聚苯胺複合,聚苯胺Zeta potential約+34 mV,奈米金則為 -35 ~ -40 mV,兩個都有相當的膠體穩定性,且兩者可自行複合在一起。利用GPC、UV-vis、IR、Zetasizer、SEM及四點探針等方法檢測樣品,得到重要結果如下:UV-vis – 聚苯胺的吸收峰在335 nm及635 nm;奈米金的吸收在523 nm;聚苯胺/奈米金複合材料則只顯現出聚苯胺的吸收訊號。苯胺Monomer、Dimer、Tetramer及166mer在pH = 2時Zeta potential分別約為8、15、34及43 mV,166mer的膠體穩定性最佳;奈米金與聚苯胺的比值在PANI:nanogold體積比 = 5:1時及在酸性環境下分散效果最好。SEM顯示奈米金粒子是吸附在聚苯胺的纖維上,而且四點探針所測得之導電度顯示,奈米金/聚苯胺複合材料的導電性比聚苯胺好。
第一章 緒論 1
第二章 實驗 13
第三章 結果與討論 25
第四章 結論 47
第五章 參考文獻 49

1. Wilcoxon, J., Optical Absorption Properties of Dispersed Gold and Silver Alloy Nanoparticles. The Journal of Physical Chemistry B, 2009. 113(9): p. 2647-2656.
2. Shi, F., Q. Zhang, Y. Ma, Y. He, and Y. Deng, From CO Oxidation to CO2 Activation:  An Unexpected Catalytic Activity of Polymer-Supported Nanogold. Journal of the American Chemical Society, 2005. 127(12): p. 4182-4183.
3. Huber, J., L.-E. Heimbürger, J.E. Sonke, S. Ziller, M. Lindén, and K. Leopold, Nanogold-Decorated Silica Monoliths as Highly Efficient Solid-Phase Adsorbent for Ultratrace Mercury Analysis in Natural Waters. Analytical Chemistry, 2015. 87(21): p. 11122-11129.
4. Lu, Q., Q. Zhao, H. Zhang, J. Li, X. Wang, and F. Wang, Water Dispersed Conducting Polyaniline Nanofibers for High-Capacity Rechargeable Lithium–Oxygen Battery. ACS Macro Letters, 2013. 2(2): p. 92-95.
5. Blair, R., H. Shepherd, T. Faltens, P.C. Haussmann, R.B. Kaner, S.H. Tolbert, J. Huang, S. Virji, and B.H. Weiller, Construction of a Polyaniline Nanofiber Gas Sensor. Journal of Chemical Education, 2008. 85(8): p. 1102.
6. Zsigmondy, Richard. Properties of colloids. Nobel Foundation. Retrieved 2009.01-23.
7. Boulon, G., Y. Guyot, M. Guzik, T. Epicier, P. Gluchowski, D. Hreniak, and W. Strek, Yb3+ Ions Distribution in YAG Nanoceramics Analyzed by Both Optical and TEM-EDX Techniques. The Journal of Physical Chemistry C, 2014. 118(28): p. 15474-15486.
8. Badrinarayanan, P., M.K. Rogalski, and M.R. Kessler, Carbon Fiber-Reinforced Cyanate Ester/Nano-ZrW2O8 Composites with Tailored Thermal Expansion. ACS Applied Materials & Interfaces, 2012. 4(2): p. 510-517.
9. Kim, J.-H., X.-J. Huang, and Y.-K. Choi, Controlled Synthesis of Gold Nanocomplex Arrays by a Combined Top-Down and Bottom-Up Approach and Their Electrochemical Behavior. The Journal of Physical Chemistry C, 2008. 112(33): p. 12747-12753.
10. Duncan, K.A., C. Johnson, K. McElhinny, S. Ng, K.D. Cadwell, G.M. Zenner Petersen, A. Johnson, D. Horoszewski, K. Gentry, G. Lisensky, and W.C. Crone, Art as an Avenue to Science Literacy: Teaching Nanotechnology through Stained Glass. Journal of Chemical Education, 2010. 87(10): p. 1031-1038.
11. Anderson, M.L., C.A. Morris, R.M. Stroud, C.I. Merzbacher, and D.R. Rolison, Colloidal Gold Aerogels:  Preparation, Properties, and Characterization. Langmuir, 1999. 15(3): p. 674-681.
12. Goren, M., N. Galley, and R.B. Lennox, Adsorption of Alkylthiol-Capped Gold Nanoparticles onto Alkylthiol Self-Assembled Monolayers:  An SPR Study. Langmuir, 2006. 22(3): p. 1048-1054.
13. Shanmugapriya, T. and P. Ramamurthy, Photoluminescence Enhancement of Nanogold Decorated CdS Quantum Dots. The Journal of Physical Chemistry C, 2013. 117(23): p. 12272-12278.
14. Lin, S.-Y., S.-W. Liu, C.-M. Lin, and C.-h. Chen, Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles. Analytical Chemistry, 2002. 74(2): p. 330-335.
15. Thompson, A.B., A.K. Calhoun, B.J. Smagghe, M.D. Stevens, M.T. Wotkowicz, V.M. Hatziioannou, and C. Bamdad, A Gold Nanoparticle Platform for Protein–Protein Interactions and Drug Discovery. ACS Applied Materials & Interfaces, 2011. 3(8): p. 2979-2987.
16. Malay, A.D., J.G. Heddle, S. Tomita, K. Iwasaki, N. Miyazaki, K. Sumitomo, H. Yanagi, I. Yamashita, and Y. Uraoka, Gold Nanoparticle-Induced Formation of Artificial Protein Capsids. Nano Letters, 2012. 12(4): p. 2056-2059.
17. Mieszawska, A.J., W.J.M. Mulder, Z.A. Fayad, and D.P. Cormode, Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease. Molecular Pharmaceutics, 2013. 10(3): p. 831-847.
18. A K Daya Sir.How does size of particles effect the colour of gold sol ?Meritnation, 2013.
19. Freemantle, M., FOUNDATION OF POLYMER SCIENCE. Chemical & Engineering News Archive, 1999. 77(19): p. 40-41.
20. Cummings, C., Neoprene and nylon stockings: The legacy of Wallace Hume Carothers. Journal of Chemical Education, 1984. 61(3): p. 241.
21. Dagan, R.O.N., Heeger wins 1995 Balzan Foundation Prize. Chemical & Engineering News Archive, 1995. 73(43): p. 69-70.
22. Halford, B., ALAN MACDIARMID DIES AT 79. Chemical & Engineering News Archive, 2007. 85(7): p. 16.
23. Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa. Macromolecules, 2002. 35(4): p. 1137-1139.
24. Trey, S., S. Jafarzadeh, and M. Johansson, In situ Polymerization of Polyaniline in Wood Veneers. ACS Applied Materials & Interfaces, 2012. 4(3): p. 1760-1769.
25. Kumar, N.A., H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, and J.-B. Baek, Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano, 2012. 6(2): p. 1715-1723.
26. Tran, H.D., I. Norris, J.M. D’Arcy, H. Tsang, Y. Wang, B.R. Mattes, and R.B. Kaner, Substituted Polyaniline Nanofibers Produced via Rapid Initiated Polymerization. Macromolecules, 2008. 41(20): p. 7405-7410.
27. Wang, R.-X., L.-F. Huang, and X.-Y. Tian, Understanding the Protonation of Polyaniline and Polyaniline–Graphene Interaction. The Journal of Physical Chemistry C, 2012. 116(24): p. 13120-13126.
28. Li, G.-R., Z.-P. Feng, J.-H. Zhong, Z.-L. Wang, and Y.-X. Tong, Electrochemical Synthesis of Polyaniline Nanobelts with Predominant Electrochemical Performances. Macromolecules, 2010. 43(5): p. 2178-2183.
29. Wang, Z.-G., P. Zhan, and B. Ding, Self-Assembled Catalytic DNA Nanostructures for Synthesis of Para-directed Polyaniline. ACS Nano, 2013. 7(2): p. 1591-1598.
30. Otero, T. F.; Boyano, I., Potentiostatic Oxidation of Polyaniline under Conformational Relaxation Control: Experimental and Theoretical Study. The Journal of Physical Chemistry B, 2003, 107 (18), 4269-4276.
31. Ostwal, M. M.; Pellegrino, J.; Norris, I.; Tsotsis, T. T.; Sahimi, M.; Mattes, B. R., Water Sorption of Acid-Doped Polyaniline Solid Fibers: Equilibrium and Kinetic Response. Industrial & Engineering Chemistry Research, 2005, 44 (20), 7860-7867.
32. Kwon, O.; McKee, M. L., Calculations of Band Gaps in Polyaniline from Theoretical Studies of Oligomers. The Journal of Physical Chemistry B, 2000, 104 (8), 1686-1694.
33. Olichwer, N., E.W. Leib, A.H. Halfar, A. Petrov, and T. Vossmeyer, Cross-Linked Gold Nanoparticles on Polyethylene: Resistive Responses to Tensile Strain and Vapors. ACS Applied Materials & Interfaces, 2012. 4(11): p. 6151-6161.
34. Du, C., J. Wang, and D. Chen, Self-Assembly of Polytetrafluoroethylene Nanoparticle Films Using Repulsive Electrostatic Interactions. Langmuir, 2014. 30(4): p. 976-983.
35. Jiang, S., H. Hou, A. Greiner, and S. Agarwal, Tough and Transparent Nylon-6 Electrospun Nanofiber Reinforced Melamine–Formaldehyde Composites. ACS Applied Materials & Interfaces, 2012. 4(5): p. 2597-2603.
36. Yeh, J.-M., S.-J. Liou, C.-Y. Lai, P.-C. Wu, and T.-Y. Tsai, Enhancement of Corrosion Protection Effect in Polyaniline via the Formation of Polyaniline−Clay Nanocomposite Materials. Chemistry of Materials, 2001. 13(3): p. 1131-1136.
37. Huang, G.-W., H.-M. Xiao, and S.-Y. Fu, Electrical Switch for Smart pH Self-Adjusting System Based on Silver Nanowire/Polyaniline Nanocomposite Film. ACS Nano, 2015. 9(3): p. 3234-3242.
38. Mörnstam, B., K.-G. Wahlund, and B. Jönsson, Potentiometric Acid−Base Titration of a Colloidal Solution. Analytical Chemistry, 1997. 69(24): p. 5037-5044.
39. Liu, S., Q. Pu, C.K. Byun, S. Wang, J. Lu, and Y. Xiong, Probing Zeta Potential in Flat Nanochannels. The Journal of Physical Chemistry C, 2007. 111(29): p. 10818-10823.
40. Zeta potential. Wikipedia®.
41. Aoki, A. and A. Heller, Electron diffusion coefficients in hydrogels formed of cross-linked redox polymers. The Journal of Physical Chemistry, 1993. 97(42): p. 11014-11019.
42. Hyder, M.N., S.W. Lee, F.Ç. Cebeci, D.J. Schmidt, Y. Shao-Horn, and P.T. Hammond, Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano, 2011. 5(11): p. 8552-8561.
43. Wu, Q., Y. Xu, Z. Yao, A. Liu, and G. Shi, Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano, 2010. 4(4): p. 1963-1970.
44. Bogdanović, U., V.V. Vodnik, S.P. Ahrenkiel, M. Stoiljković, G. Ćirić-Marjanović, and J.M. Nedeljković, Interfacial synthesis and characterization of gold/polyaniline nanocomposites. Synthetic Metals, 2014. 195: p. 122-131.
45. Chen, G.-L., S.-M. Shau, T.-Y. Juang, R.-H. Lee, C.-P. Chen, S.-Y. Suen, and R.-J. Jeng, Single-Layered Graphene Oxide Nanosheet/Polyaniline Hybrids Fabricated Through Direct Molecular Exfoliation. Langmuir, 2011. 27(23): p. 14563-14569.
46. A. Reza., Application of Polyaniline and its Composites for Adsorption/Recovery of Chromium (VI) from Aqueous Solutions.Acta Chim. Slov., 2006, 53, 88-94
47. Zhang, F., H. Cao, D. Yue, J. Zhang, and M. Qu, Enhanced Anode Performances of Polyaniline–TiO2–Reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorganic Chemistry, 2012. 51(17): p. 9544-9551.
48. Chowdhury, A.-N., S. Ferdousi, M.M. Islam, T. Okajima, and T. Ohsaka, Arsenic detection by nanogold/conducting-polymer-modified glassy carbon electrodes. Journal of Applied Polymer Science, 2007. 104(2): p. 1306-1311.
49. Huang, J., Q. Lin, X. Zhang, X. He, X. Xing, W. Lian, M. Zuo, and Q. Zhang, Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Research International, 2011. 44(1): p. 92-97.
50. Wang, X., W. Liu, C. Li, C. Chu, S. Wang, M. Yan, J. Yu, and J. Huang, Synthesis of polyaniline using electrochemical polymerization and application in a sensitive DNA biosensor with [Ru(bpy)3]2+ functionalized nanoporous gold composite as label. Monatshefte für Chemie - Chemical Monthly, 2013. 144(12): p. 1759-1765.
51. Haiss, W., N.T.K. Thanh, J. Aveyard, and D.G. Fernig, Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 2007. 79(11): p. 4215-4221.
52. Li, D., J. Huang, and R.B. Kaner, Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts of Chemical Research, 2009. 42(1): p. 135-145.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔