|
1.Nickoloff, B.J. and Y. Naidu, Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. Journal of the American Academy of Dermatology, 1994. 30(4): p. 535-546. 2.Cichorek, M., M. Wachulska, A. Stasiewicz, and A. Tyminska, Skin melanocytes: biology and development. Postepy Dermatol Alergol, 2013. 30(1): p. 30-41. 3.Tsatmali, M., J. Ancans, and A.J. Thody, Melanocyte Function and Its Control by Melanocortin Peptides. Journal of Histochemistry & Cytochemistry, 2002. 50(2): p. 125-133. 4.Chen, J., R. Shao, X.D. Zhang, and C. Chen, Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics. Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics, 2013. 34(6): p. 1481-1489. 5.Word Health Organization[Homepage on the Internet] Skin Cancer. Available from:http://www.who.int/uv/faq/skincancer/en/index1.html. Accessed May 4, 2016. 6.Helmbach, H., E. Rossmann, M.A. Kern, and D. Schadendorf, Drug resistance in human melanoma. International Journal of Cancer, 2001. 93(5): p. 617-622. 7.Skin Cancer Foundation [Homepage on the Internet] Types of melanoma. Available from:http://www.skincancer.org/skin-cancer-information/melanoma/types-of-melanoma. Accessed May 4,2016. 8.Bellew, S., D.J.Q. Rosso, and G.K. Kim, Skin cancer in asians: part 2: melanoma. The Journal of clinical and aesthetic dermatology, 2009. 2(10): p. 34-36. 9.Autier, P., D. Epimel, and J. Group, Influence of sun exposures during childhood and during adulthood on melanoma risk. International Journal of Cancer, 1998. 77(4): p. 533-537. 10.Abbasi, N.R., H.M. Shaw, D.S. Rigel, and R.J. Friedman, Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. Jama, 2004. 292(22): p. 2771-2776. 11.American Joint Committee on Cancer [Homepage on the Internet] Melanoma of the Skin Staging.Available from: https://cancerstaging.org/references-tools/quickreferences/documents/melanomasmall.pdf .Accessed May 4. 12.Cancer Research UK [Homepage on the Internet] Skin cancer incidence by stage at diagnosis. Available from: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/skin-cancer/incidence#heading-Three. Accessed May 4, 2016 13.Bhatia, S., S.S. Tykodi, and J.A. Thompson, Treatment of metastatic melanoma: an overview. Oncology, 2009. 23(6): p. 488-496. 14.Villanueva, J., A. Vultur, J.T. Lee, and R. Somasundaram, Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer cell, 2010. 18(6): p. 683-695. 15.Zheng, B. and D.E. Fisher, Metabolic vulnerability in melanoma: a ME2 (me too) story. The Journal of investigative dermatology, 2015. 135(3): p. 657-659. 16.Chang, Y.-L., H.-W. Gao, C.-P. Chiang, W.-M.M. Wang, S.-M. Huang, C.-F. Ku, G.-Y. Liu, and H.-C. Hung, Human mitochondrial NAD(P)(+)-dependent malic enzyme participates in cutaneous melanoma progression and invasion. The Journal of investigative dermatology, 2015. 135(3): p. 807-815. 17.Ren, J.-G.G., P. Seth, C.B. Clish, P.K. Lorkiewicz, R.M. Higashi, A.N. Lane, T.W. Fan, and V.P. Sukhatme, Knockdown of malic enzyme 2 suppresses lung tumor growth, induces differentiation and impacts PI3K/AKT signaling. Scientific reports, 2014. 4(5414): p. 1-11. 18.Ren, J.-G., P. Seth, P. Everett, C.B. Clish, and V.P. Sukhatme, Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2. PLoS ONE, 2010. 5(9): p. 1-12. 19.Jiang, P., W. Du, A. Mancuso, K.E. Wellen, and X. Yang, Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature, 2013. 493(7434): p. 689-693. 20.Feige, E., S. Yokoyama, C. Levy, M. Khaled, V. Igras, R.J. Lin, S. Lee, H.R. Widlund, S.R. Granter, A.L. Kung, and D.E. Fisher, Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(43): p. 33. 21.Giordano, F.J. and R.S. Johnson, Angiogenesis: the role of the microenvironment in flipping the switch. Current opinion in genetics & development, 2001. 11(1): p. 35-40. 22.Covello, K.L. and M.C. Simon, HIFs, hypoxia, and vascular development. Current topics in developmental biology, 2004. 62: p. 37-54. 23.Kaelin Jr, W.G., Proline hydroxylation and gene expression. Annu. Rev. Biochem., 2005. 74: p. 115-128. 24.Carroll, V.A. and M. Ashcroft, HIF-1a regulation by proline hydroxylation. Expert Reviews in Molecular Medicine, 2005. 7(6): p. 1. 25.Maxwell, P.H., M.S. Wiesener, G.W. Chang, and S.C. Clifford, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999. 399: p. 271-275. 26.Sadri, N. and P.J. Zhang, Hypoxia-inducible factors: mediators of cancer progression; prognostic and therapeutic targets in soft tissue sarcomas. Cancers, 2013. 5(2): p. 320-333. 27.Semenza, G.L., Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology, 2004. 19(4): p. 176-182. 28.Feige, E., S. Yokoyama, C. Levy, M. Khaled, V. Igras, R.J. Lin, S. Lee, H.R. Widlund, S.R. Granter, and A.L. Kung, Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proceedings of the National Academy of Sciences, 2011. 108(43): p. 924-933. 29.Talks, K.L., H. Turley, K.C. Gatter, and P.H. Maxwell, The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology, 2000. 157(2): p. 411-421. 30.Lin, W.M., A.C. Baker, R. Beroukhim, W. Winckler, and W. Feng, Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer research, 2008. 68(3): p. 664-673. 31.Semenza, G.L., Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatric research, 2001. 49(5): p. 614-617. 32.Hoeflich, K.P., S. Herter, J. Tien, L. Wong, L. Berry, J. Chan, C. O'Brien, Z. Modrusan, S. Seshagiri, and M. Lackner, Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer research, 2009. 69(7): p. 3042-3051. 33.Xing, F., Y. Persaud, C.A. Pratilas, B.S. Taylor, M. Janakiraman, Q.B. She, H. Gallardo, C. Liu, T. Merghoub, and B. Hefter, Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF. Oncogene, 2012. 31(4): p. 446-457. 34.Wu, H., V. Goel, and F.G. Haluska, PTEN signaling pathways in melanoma. Oncogene, 2003. 22(20): p. 3113-3122. 35.Jiang, D. and L.D. Attardi, Engaging the p53 metabolic brake drives senescence. Cell Res, 2013. 23(6): p. 739-40. 36.Hofer, T., R. Wenger, and M. Gassmann, Oxygen sensing, HIF-1a stabilization and potential therapeutic strategies. Pflügers Archiv European Journal of Physiology, 2002. 443(4): p. 503-507. 37.Han, Y.H., H.J. Moon, and B.R. You, The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncology reports, 2009. 22(1): p. 215-221. 38.Sato, F., U.K. Bhawal, T. Yoshimura, and Y. Muragaki, DEC1 and DEC2 crosstalk between circadian rhythm and tumor progression. Journal of Cancer, 2016. 7(2): p. 153-159. 39.Wen, Y., L. Xu, F.-l.L. Chen, J. Gao, J.-y.Y. Li, L.-h.H. Hu, and J. Li, Discovery of a novel inhibitor of NAD(P)(+)-dependent malic enzyme (ME2) by high-throughput screening. Acta pharmacologica Sinica, 2014. 35(5): p. 674-684. 40.Hsieh, J.-Y., S.-Y. Li, W.-C. Tsai, J.-H. Liu, C.-L. Lin, G.-Y. Liu, and H.-C. Hung, A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD (P)+-dependent malic enzyme (ME2) and induces cellular senescence. Oncotarget, 2015. 6(24): p. 20084. 41.Mo, J., B. Sun, X. Zhao, Q. Gu, X. Dong, Z. Liu, and Y. Ma, Hypoxia-induced senescence contributes to the regulation of microenvironment in melanomas. Pathology–Research and Practice, 2013. 209(10): p. 640-647. 42.Kaplon, J., L. Zheng, K. Meissl, B. Chaneton, V.A. Selivanov, G. Mackay, S.H. van der Burg, E.M. Verdegaal, M. Cascante, T. Shlomi, E. Gottlieb, and D.S. Peeper, A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 2013. 498(7452): p. 109-112. 43.Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nature reviews. Cancer, 2002. 2(1): p. 38-47. 44.Minchenko, A., T. Bauer, S. Salceda, and J. Caro, Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory investigation; a journal of technical methods and pathology, 1994. 71(3): p. 374-379. 45.Stone, J., A. Itin, T. Alon, J. Pe'Er, H. Gnessin, T. Chan-Ling, and E. Keshet, Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. The Journal of neuroscience, 1995. 15(7): p. 4738-4747. 46.Greijer, A.E., The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. Journal of Clinical Pathology, 2004. 57(10): p. 1009-1014. 47.Papandreou, I., A.L. Lim, and K. Laderoute, Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death and Differentiation, 2008. 15(10): p. 1572-1581. 48.Wu, Y., H. Sato, T. Suzuki, T. Yoshizawa, S. Morohashi, H. Seino, T. Kawamoto, K. Fujimoto, Y. Kato, and H. Kijima, Involvement of c-Myc in the proliferation of MCF-7 human breast cancer cells induced by bHLH transcription factor DEC2. International Journal of Molecular Medicine, 2014. 35(3): p. 815-820. 49.Fujimoto, K., H. Hamaguchi, T. Hashiba, T. Nakamura, T. Kawamoto, F. Sato, M. Noshiro, U.K. Bhawal, K. Suardita, and Y. Kato, Transcriptional repression by the basic helix-loop-helix protein Dec2: multiple mechanisms through E-box elements. International journal of molecular medicine, 2007. 19(6): p. 925-932.
|