跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李東岳
研究生(外文):LI,TUNG-YUEH
論文名稱:幹細胞治療糖尿病 建立轉導及追蹤瓦頓氏凝膠間質幹細胞的方法
論文名稱(外文):Stem Cell Therapy for Diabetes TreatmentEstablishment of Transduction and Cell Tracking Methods in Wharton’s Jelly Mesenchymal Stem Cell
指導教授:徐佳福
指導教授(外文):SHYU,JIA-FWU
口試委員:陳天華詹益欣
口試委員(外文):CHEN,TIEN-HUACHAN,YI-HSIN
口試日期:2016-05-20
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物及解剖學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:55
中文關鍵詞:瓦頓氏凝膠間質幹細胞慢病毒冷光素酶
外文關鍵詞:Wharton’s Jelly Mesenchymal stem cellLentivirusLuciferase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
目前糖尿病(DM)已成為二十一世紀全世界最重要的公共衛生課題之一,隨著病患人數的劇增,糖尿病威脅著全人類的健康。而第一型糖尿病(T1D)的病因為自體免疫攻擊胰島細胞,T1D的病患佔總糖尿病的病患5~10%。注射胰島素治療T1D,並無法阻止自體免疫攻擊胰島細胞。隨著再生醫學的發展,目前提出了幾種可能有治癒T1D潛力的治療方法,其中幹細胞療法特別有潛力。根據我們實驗室之前研究的結果,瓦頓氏凝膠間質幹細胞(WJ-MSCs)可以降低非肥胖型糖尿病(NOD)小鼠的高血糖。而WJ-MSCs在NOD小鼠體內可以調控免疫反應以及分化成胰島素分泌細胞(IPCs)。但是NOD小鼠的血糖並沒有恢復到正常範圍。在這個研究中,我們藉由轉導pancreatic and duodenal homeobox 1 (PDX1)來誘導WJ-MSCs分化成為IPCs。為了瞭解WJ-MSCs歸巢的機制,我們通過慢病毒引入熒光素酶及綠螢光蛋白接著使用活體影像分析儀(IVIS)去追踪IPCs。此外,我們建立了刺激WJ-MSCs分化變成IPCs以及活體追踪這些細胞的方法。另外,我們還計劃引入更多的潛在基因如PAX4,NKX6.1能夠更有效地誘導WJ-MSC分化成IPCs。最後,幹細胞的增殖和後續的分化,似乎具有相當大的潛力,以克服器官捐贈的短缺。細胞替代療法可能會提供最好的方式來實現對糖尿病患者生理上的血糖控制。
Diabetes mellitus (DM) threatens people health all over the world. Type 1 diabetes mellitus (T1D), caused by autoimmune attacking islet cells, affects 5-10% of total DM. Insulin injection is the predominant treating of T1D that cannot prevent islet cells loosing and poor immunosuppression. The recent progress in regenerative medicine, especially stem cell therapy, has suggested several novel and potential cures for T1D. According to our previous study, Wharton’s jelly mesenchymal stem cells (WJ-MSCs) can reduce hyperglycemia in nonobesity diabetic (NOD) mice. The function of WJ-MSCs is probably due to immune-modulatory and they may become insulin producing cells (IPCs) in vivo. However, blood sugar does not return to normal rang in NOD mice. In this study, we induced WJ-MSCs into IPCs by transduction of pancreatic and duodenal homeobox 1 (PDX1) in these cells. To reveal the mechanism of WJ-MSCs homing, we introduce luciferase and GFP by lentivirus and use IVIS Spectrum to track IPCs in vivo. In addition, we establish a method of stimulating MSCs to IPCs differentiation and tracking these cells in vivo. Furthermore, we plan to introduce more potential genes like PAX4, NKX6.1 to drive WJ-MSC to IPCs more effectively. In conclusion, the expansion and subsequent differentiation of stem cells, appears to have considerable potential to overcome the shortage of donor organs. Cellular replacement therapy may offer the best approach to achieve physiologic glucose control in diabetic patients.
正文目錄 VII
圖表目錄 X
中文摘要 IV
英文摘要 V
第一章 緒論 6
 第一節 糖尿病(Diabetes mellitus) 6
壹、病因 6
貳、併發症 7
參、分類 7
肆、診斷 9
伍、治療 9
陸、預防 10
 第二節 間葉幹細胞(Mesenchymal stem cell) 11
壹、幹細胞的分類 11
貳、幹細胞產生新的胰島β細胞的發展 12
參、瓦頓氏凝膠間葉幹細胞(Wharton’s jelly mesenchymal stem cells) 13
第三節 基因轉殖 14
  壹、病毒載體 15
貳、非病毒載體 18
  參、基因 21
第二章 實驗材料與方法 23
 第一節 實驗材料 23
  壹、實驗藥品、試劑與耗材 23
  貳、實驗基因、細胞、菌種及載體 26
  參、實驗儀器設備 26
 第二節 實驗方法 27
  壹、WJ-MSCs的培養 27
  貳、293FT細胞株的培養 27
  參、慢病毒質體製備 27
  肆、基因轉染(Transfection) 28
  伍、收集病毒 29
  柒、慢病毒感染WJ-MSCs(Transduction) 30
  捌、體外生物發光檢測(In vitro bioluminescent assay) 30
  玖、腺病毒(Adenovirus)放大以及感染 30
  拾、腺病毒(Adenovirus)感染WJ-MSCs 31
  壹拾壹、細胞免疫螢光染色 31
第三章 結果 32
 第一節 慢病毒質體製備 32
 第二節 限制酶酶切(Restriction digestion) 32
 第三節 基因轉染(Transfection) 33
 第四節 慢病毒試紙檢測 33
 第五節 慢病毒感染WJ-MSCs 33
 第六節 體外生物發光試驗 34
 第七節 使用螢光顯微鏡檢查體外生物發光試驗 34
 第八節 WJ-MSCs免疫螢光染色 35
第四章 討論 36
第五章 參考文獻 40
第六章 實驗圖表 43
第七章 附錄 51

1.Kitabchi, A.E., et al. (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care, 32, 1335-43.
2.Power, C., et al. (2011) Changes in BMI, duration of overweight and obesity, and glucose metabolism: 45 years of follow-up of a birth cohort. Diabetes Care, 34, 1986-91.
3.Shi, Y., et al. (2014) The global implications of diabetes and cancer. Lancet, 383, 1947-8.
4.Kim, J.J., et al. (2007) Analysis of compensatory beta-cell response in mice with combined mutations of Insr and Irs2. Am J Physiol Endocrinol Metab, 292, E1694-701.
5.Butler, A.E., et al. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102-10.
6.Ferrannini, E. (2010) The stunned beta cell: a brief history. Cell Metab, 11, 349-52.
7.Gepts, W. (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes, 14, 619-33.
8.Butler, A.E., et al. (2007) Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia, 50, 2323-31.
9.Rekittke, N.E., et al. (2016) Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells. 2016, 3764681.
10.Parsons, X.H. (2016) Direct Conversion of Pluripotent Human Embryonic Stem Cells Under Defined Culture Conditions into Human Neuronal or Cardiomyocyte Cell Therapy Derivatives. Methods Mol Biol, 1307, 299-318.
11.Imaizumi, M., et al. (2013) In vitro epithelial differentiation of human induced pluripotent stem cells for vocal fold tissue engineering. Ann Otol Rhinol Laryngol, 122, 737-47.
12.Powers, J.M., et al. (2013) Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies. J Stem Cell Res Ther, 2013.
13.Budniatzky, I., et al. (2014) Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med, 3, 448-57.
14.Takahashi, K., et al. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-76.
15.Takahashi, K., et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861-72.
16.Ciuffreda, M.C., et al. (2016) Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages. Methods Mol Biol, 1416, 149-58.
17.Chamberlain, G., et al. (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739-49.
18.Can, A., et al. (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 25, 2886-95.
19.Karahuseyinoglu, S., et al. (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25, 319-31.
20.Wang, H.S., et al. (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22, 1330-7.
21.Tsai, P.J., et al. (2015) Undifferentiated Wharton's Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice. Cell Transplant, 24, 1555-70.
22.Nekanti, U., et al. (2010) Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res, 5, 244-54.
23.Weiss, M.L., et al. (2008) Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells, 26, 2865-74.
24.Zhao, Q., et al. (2016) Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2, 3-20.
25.Yu, L., et al. (2015) Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells, 33, 240-52.
26.Lin, C.Y., et al. (2015) IL-1beta-Induced Mesenchymal Stem Cell Migration Involves MLCK Activation via PKC Signaling. Cell Transplant, 24, 2011-28.
27.Bhartiya, D. (2016) Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles. Stem Cells Int, 143, 267-74.
28.Chen, S.T., et al. (1996) Generation of packaging cell lines for pseudotyped retroviral vectors of the G protein of vesicular stomatitis virus by using a modified tetracycline inducible system. Proc Natl Acad Sci U S A, 93, 10057-62.
29.Naldini, L., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272, 263-7.
30.Engelhardt, J.F., et al. (1994) Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci U S A, 91, 6196-200.
31.Lieber, A., et al. (1996) Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J Virol, 70, 8944-60.
32.Felgner, P.L. (1997) Nonviral strategies for gene therapy. Sci Am, 276, 102-6.
33.Yang, N.S., et al. (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A, 87, 9568-72.
34.Bai, Z.M., et al. (2013) Arterially transplanted mesenchymal stem cells in a mouse reversible unilateral ureteral obstruction model: in vivo bioluminescence imaging and effects on renal fibrosis. Chin Med J (Engl), 126, 1890-4.
35.Tsai, P.J., et al. (2012) Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J Biomed Sci, 19, 47.
36.Wang, H.S., et al. (2011) Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant, 20, 455-66.
37.Liew, C.G., et al. (2008) PAX4 enhances beta-cell differentiation of human embryonic stem cells. PLoS One, 3, e1783.
38.Ben-Othman, N., et al. (2013) From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract, 101, 1-9.
39.Hanley, N. (2014) Closing in on pancreatic beta cells. Nat Biotechnol, 32, 1100-2.
40.Shyu, J.F., et al. (2011) Alleviation of hyperglycemia in diabetic rats by intraportal injection of insulin-producing cells generated from surgically resected human pancreatic tissue. J Endocrinol, 208, 233-44.
41.Kono, T.M., et al. (2014) Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: analysis of hASC-derived paracrine effectors. Stem Cells, 32, 1831-42.
42.Chang, F.P., et al. (2016) PDGF Facilitates Direct Lineage Reprogramming of Hepatocytes to Functional ss-Like Cells Induced by Pdx1 and Ngn3. Cell Transplant.
43.Jinek, M., et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-21.
44.Hwang, W.Y., et al. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31, 227-9.
45.Ran, F.A., et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380-9.
46.Burgess, D.J. (2014) Evolution: Cancer drivers everywhere? Nat Rev Genet, 15, 289.
47.Fu, Y., et al. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32, 279-84.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 人類骨髓間質幹細胞在癌症幹細胞之利基中所扮演的角色
2. 間質幹細胞治療潛力運用在缺血性心臟疾病及神經退化性疾病- 自胎兒階段及多功能幹細胞之新來源間質幹細胞
3. 骨髓間葉幹細胞治療心血管疾病之免疫調控潛能第一部份:移植自體骨髓間葉幹細胞治療植體動脈硬化第二部份:驅動內源性骨髓間葉幹細胞治療心肌梗塞
4. 探討厚朴酚對神經膠質母細胞瘤移行之影響
5. 比較人類臍帶血造血幹細胞及間質幹細胞在脊椎損傷動物模式的療效
6. 活體間葉幹細胞的偵測以及幹細胞應用於砷中毒引起血管病變的治療
7. 抑鈣素調控破骨細胞表達Wnt10b調節骨生成作用
8. 人類臍帶間質幹細胞與人類臍帶血造血幹細胞在實驗性熱中風的療效比較
9. 以實驗性熱中風之小鼠模式下,比較人類乳牙幹細胞和臍帶血幹細胞的抗凋亡作用
10. 人類臍帶間質幹細胞滋養層透過WNT/β-Catenin訊號傳遞路徑調控人類胚胎幹細胞的腫瘤生成能力
11. 以系統生物學方法探討人類骨髓間充質幹細胞 對於肺癌幹細胞的初始與轉移中所扮演的角色
12. 嘌呤受體P2X7在MDMA引發腦部炎性反應之角色
13. 比較人類成體細胞、誘導性多功能幹細胞及胚胎幹細胞之間的蛋白體路徑分析
14. 骨髓間質幹細胞有助於異質性癌症幹細胞利基形成並促進癌症轉移
15. 藉由間質幹細胞分泌的外泌體所轉移至癌細胞的RNAs/蛋白質能夠調控其癌症幹細胞的特性