|
1.Yeh, C.-C., et al., Risk factors for colorectal cancer in Taiwan: a hospital-based case-control study. Journal of the Formosan Medical Association, 2003. 102(5): p. 305-312. 2.Haenszel, W. and M. Kurihara, Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst, 1968. 40(1): p. 43-68. 3.Grothey, A., et al., Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol, 2004. 22(7): p. 1209-14. 4.. 5.. 6.Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7. 7.Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005. 65(23): p. 10946-51. 8.Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5. 9.Zhou, L., et al., The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures. Breast Cancer Res Treat, 2010. 122(3): p. 795-801. 10.Wei, X.D., et al., In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line. Head Neck, 2009. 31(1): p. 94-101. 11.Shen, S., et al., Tumor-initiating cells are enriched in CD44(hi) population in murine salivary gland tumor. PLoS One, 2011. 6(8): p. e23282. 12.Sung, J.M., et al., Characterization of a stem cell population in lung cancer A549 cells. Biochem Biophys Res Commun, 2008. 371(1): p. 163-7. 13.Hanahan, D. and L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012. 21(3): p. 309-22. 14.Balkwill, F.R., M. Capasso, and T. Hagemann, The tumor microenvironment at a glance. J Cell Sci, 2012. 125(Pt 23): p. 5591-6. 15.Hu, M. and K. Polyak, Microenvironmental regulation of cancer development. Curr Opin Genet Dev, 2008. 18(1): p. 27-34. 16.Ma, J. and D.J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther, 2008. 7(12): p. 3670-84. 17.Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-12. 18.Quatromoni, J.G. and E. Eruslanov, Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res, 2012. 4(4): p. 376-89. 19.Tang, X., Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett, 2013. 332(1): p. 3-10. 20.Tashiro, K., T. Nakamura, and T. Honjo, The signal sequence trap method. Methods Enzymol, 1999. 303: p. 479-95. 21.Tashiro, K., et al., Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science, 1993. 261(5121): p. 600-603. 22.Deloukas, P., et al., The DNA sequence and comparative analysis of human chromosome 10. Nature, 2004. 429(6990): p. 375-81. 23.Shirozu, M., et al., Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics, 1995. 28(3): p. 495-500. 24.De La Luz Sierra, M., et al., Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood, 2004. 103(7): p. 2452-9. 25.Bleul, C.C., et al., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996. 382(6594): p. 829-33. 26.Balabanian, K., et al., The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem, 2005. 280(42): p. 35760-6. 27.Burns, J.M., et al., A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med, 2006. 203(9): p. 2201-13. 28.Cruz-Orengo, L., et al., CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med, 2011. 208(2): p. 327-39. 29.Bleul, C.C., et al., A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med, 1996. 184(3): p. 1101-9. 30.Ara, T., et al., Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci U S A, 2003. 100(9): p. 5319-23. 31.Askari, A.T., et al., Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003. 362(9385): p. 697-703. 32.Ma, Q., et al., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A, 1998. 95(16): p. 9448-53. 33.Bilchik, A.J., et al., Prognostic impact of micrometastases in colon cancer: interim results of a prospective multicenter trial. Ann Surg, 2007. 246(4): p. 568-75; discussion 575-7. 34.Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335-48. 35.Sun, Y.X., et al., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 2003. 89(3): p. 462-73. 36.Taichman, R.S., et al., Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002. 62(6): p. 1832-7. 37.Hu, T.H., et al., SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway. Cancer Lett, 2014. 354(2): p. 417-26. 38.Matsusue, R., et al., Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann Surg Oncol, 2009. 16(9): p. 2645-53. 39.Welford, A.F., et al., TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest, 2011. 121(5): p. 1969-73. 40.Micke, P., Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung cancer, 2004. 45: p. S163-S175. 41.Gout, S. and J. Huot, Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenvironment, 2008. 1(1): p. 69-83. 42.Elenbaas, B. and R.A. Weinberg, Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res, 2001. 264(1): p. 169-84. 43.Chen, W.J., et al., Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun, 2014. 5: p. 3472. 44.Jung, Y., et al., Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun, 2013. 4: p. 1795. 45.Calon, A., et al., Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012. 22(5): p. 571-84. 46.Hawinkels, L.J., et al., Interaction with colon cancer cells hyperactivates TGF-beta signaling in cancer-associated fibroblasts. Oncogene, 2014. 33(1): p. 97-107. 47.Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 48.Tommelein, J., et al., Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol, 2015. 5: p. 63. 49.Hill, R., et al., Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 2005. 123(6): p. 1001-1011. 50.Kalluri, R. and M. Zeisberg, Fibroblasts in cancer. Nat Rev Cancer, 2006. 6(5): p. 392-401. 51.Karagiannis, G.S., et al., Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res, 2012. 10(11): p. 1403-18. 52.Zhou, B., et al., Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: enhancement of cell recruitment and entrapment. Med Hypotheses, 2007. 68(6): p. 1268-71. 53.Zhang, M., et al., SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. Faseb j, 2007. 21(12): p. 3197-207.
|