(3.232.129.123) 您好!臺灣時間:2021/03/06 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林雪如
研究生(外文):LIN, HSUEH-JU
論文名稱:離胺酸蛋白激酶調控高氧誘發肺損傷模式中肺泡液體之機轉
論文名稱(外文):With-No-Lysine Kinase 4 Mediates Alveolar Fluid Regulation in Hyperoxia-induced Lung Injury
指導教授:黃坤崙黃坤崙引用關係
指導教授(外文):Huang, Kun-Lun
口試委員:林石化楊松昇彭忠衎藍冑進
口試委員(外文):Lin, Shih HuaYang, Sung SenPeng, Chou ChinLan,Chou-Chin
口試日期:2015-09-11
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:108
中文關鍵詞:急性肺損傷上皮鈉離子通道肺泡液體清除率離胺酸蛋白機酶
外文關鍵詞:acute lung injuryepithelial sodium channelsalveolar fluid clearanceWNK4SPAKNKCC1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
前言: 肺泡上皮細胞有許多離子通道,包括上皮鈉離子通道(ENaC),囊性纖維化跨膜傳導調節因子(CFTR),鈉鉀幫浦(Na+-K+-ATPase),及鈉鉀氯共同轉換因子(NKCC)等。這些離子通道所產生的滲透壓梯度,具主動回收鹽分與水分的功能,可將肺泡中過多的液體帶回血液循環,稱之為肺泡液清除機制。先前的研究顯示,在腎小管細胞中,With-no-lysine kinase 4 (WNK4)和Ste20-related proline-alanine-rich kinase (SPAK) 調控上皮細胞離子通道之鹽分與水分的平衡扮演ㄧ個重要的角色,但WNK/SPAK如何調控肺泡液體清除機制目前未知。方法:本研究使用SPAK基因剔除小鼠和WNK4D561A/+嵌入小鼠於氧氣暴露誘發急性肺損傷模式中探討SPAK增加NKCC1磷酸化與肺泡液體清除之間的相關性。結果:將小鼠氧氣暴露60小時後計算肺泡白血球浸潤、肺泡灌洗液蛋白質含量、肺泡灌洗液中的乳酸脫氫酶、肺乾溼重比等指數皆明顯增加,並且肺泡液體清除率下降造成嚴重的急性肺損傷。其中氧氣暴露會造成SPAK和NKCC1的磷酸化表現增加,而SPAK基因剔除小鼠中SPAK和NKCC1磷酸化表現量明顯減弱並且原來被抑制的肺泡液體清除率明顯恢復,改善肺損傷。相反的,在WNK4D561A/+(SPAK-NKCC1持續表現)的動物模式中,氧氣暴露造成更嚴重的肺損傷且肺泡液體清除率明顯下降,這樣的現象可以利用NKCC1的抑制劑(furosemide)明顯改善氧氣誘發嚴重的肺損傷,是因為WNK4D561A/+小鼠本身增加肺泡上皮鈉離子通道將水分回收。 結論:在氧氣暴露誘發急性肺損傷的模式中,WNK/SPAK-NKCC1路徑藉由調控肺泡液體清除的機制扮演ㄧ個重要的角色。
Objectives: To investigate mechanisms involved in the regulation of epithelial ion channels and alveolar fluid clearance in hyperoxia-induced lung injury.Subjects: Wild-type, STE20/SPS1-related proline/alanine rich kinase knockout (SPAK–/–), and with-no-lysine kinase 4 knockin (WNK4D561A/+) mice. Interventions: Mice were exposed to room air or 95% hyperoxia for 60 hours.Methods and Main Results: Exposure to hyperoxia for 60 h increased the lung expression of WNK4 and led to SPAK and sodium–potassium–chloride cotransporter (NKCC1) phosphorylation, which resulted in the suppression of AFC and increase of lung edema. WNK4D561A/+ mice at the baseline presented an abundance of epithelium sodium channel (ENaC) and high levels of SPAK and NKCC1 phosphorylation. Compared with the wild-type group, hyperoxia caused greater ENaC expression in WNK4D561A/+ mice, but no significant difference in SPAK and NKCC1 phosphorylation. The functional inactivation of NKCC1 by gene knockout in SPAK–/– mice yielded a lower severity of lung injury and longer animal survival, whereas constitutive expression of WNK4 exacerbated the hyperoxia-induced lung injury. Pharmacological inhibition of NKCC1 by inhaled furosemide improved animal survival in WNK4D561A/+ mice. In contrast, inhibition of ENaC exacerbated the hyperoxia-induced lung injury and animal death.
Conclusions: WNK4 plays a crucial role in the regulation of epithelial ion channels and AFC, mainly via phosphorylation and activation of SPAK and NKCC1.

CONTENS
Title page
Contents………………………………………………...……...II
List of Illustrations……………………………………………..V
List of tables…………………………………………………..IX
Abbreviations………………………………………………..…X
Chinese Abstract……………………………………………...XII
English Abstract……………………………………...……XIV

Contents
Chapter 1 Introduction……………………………………….……………..….…..1
1.1 Acute respiratory distress syndrome………....……………...……….1
1.1.1 Pathogensis of ARDS…………….......……………………...…2
1.1.2 Animal models of acute lung injury……………………………2
1.2 Alveolar fluid clearance……………………………………...…..…..4
1.2.1 Epithelial sodium channel……………….……………………..8
1.2.2 Na+-K+-ATPase………………………………...…………......10
1.2.3 Sodium-potassium-chloride cotranspoter…………………..…10
1.3 WNK and ion transports in kidney…………………..……….…......13
1.4 The mechanisms regulating ion channel activities and fluid
movement in kidney………………………………………..….13
1.5 The regulating mechanism of alveolar epithelial ion channels…..…17
Aim of this thesis……………………………………………………17



Chapter 2
Material and methods………………………………………….….…..19
2.1 Animals and mouse model of hyperoxia-induced lung injury……...19
2.2 Hyperoxia exposure………………………………………………...22
2.3 Pulmonary edema and bronchial–alveolar lavage fluid study……...22
2.4 AFC determination………………………………………………….23
2.5 Histology……………………………………………………….…...25
2.6 Immunoblotting………………………………………………..........25
2.7 Immunofluorescence……………………………………………......26
2.8 Pharmacological modulation of ENaC and NKCC1…………..…....26
2.9 Urine volume and fractional excretion of sodium………………..…27
2.10 Statistical analysis………………………………………………....27
Chapter 3
Results……………………………………………………………….….28
3.1 Hyperoxia activates WNK4 in the lung…………………………......28
3.2 Hyperoxia activates the SPAK pathway in the lung………….…..…38
3.3 Modulation of hyperoxia-induced ALI by SPAK or WNK4 gene
manipulation………………………………………………….……..45
3.4 WNK4 gene manipulation modulates the inflammation cascade…...56

3.5 Effects of pharmacological modulation of ion channels on
hyperoxia-induced ALI……………………………………….…………65
Chapter 4
Discussion……………………………………….………………...…....74
4.1 Summary…………………………………….……………………....74
4.2 SPAK-NKCC1 pathway in lung injury……….…………………......75
4.3 The role of WNK4/SPAK in AFC regulation….………………..…..76
4.4 WNK4-MAPK pathway in lung inflammation……………………..78
4.5 Ion channel regulation and lung inflammation……………….…..…79
Chapter 5
Conclusion and future perspectives……………………………….….82
Chapter 6
References………………………………………………………….…...84
Appendixes…………………………………………………...………...98






List of figures
Figure 1.1 AFC involves ion channels in the lung epithelium…………...7
Figure 1.2 NKCC1 contributes to pulmonary edema………………...…12
Figure 1.3 WNK-SPAK/OSR1 signalling pathway………………...…...15
Figure 1.4 Hypothetical model of the regulation of WNK/SPAK/NKCC……………………………………….18
Figure 2.1 Targeting strategy for generating WNK4D561A/+ knockin mice…………………………………………………………20
Figure 2.2 Targeting strategy for generating SPAK null mice.................21
Figure 2.3 AFC in practice photo………………………….....................24
Figure 3.1 Hyperoxia-induced expression of WNK4 and ENaC in the lungs………………………………………………………...30
Figure 3.2 Hyperoxia-induced expression of WNK4 in the lungs…..….31
Figure 3.3 Hyperoxia-induced expression of ENaC in the lungs…..…...32
Figure 3.4 Expression and activation of SPAK/OSR1 and NKCC1 in WNK4D561A/+ mouse lungs………………………………….33
Figure 3.5 Expression of SPAK/OSR1 in WNK4D561A/+ mouse lungs….34
Figure 3.6 Phosphorylation of SPAK/OSR1 in WNK4D561A/+ mouse lungs……………………………………………………...…35
Figure 3.7 Expression of NKCC1 in WNK4D561A/+ mouse lungs………36
Figure 3.8 Phosphorylation of NKCC1 in WNK4D561A/+ mouse lungs....37
Figure 3.9 Expression and activation of SPAK/OSR1 and NKCC1 in SPAK–/– mouse lungs…………………..……………..…..…39
Figure 3.10 Expression of SPAK/OSR1 in SPAK–/– mouse lungs…....…40
Figure 3.11 Phosphorylation of SPAK/OSR1 in SPAK–/– mouse lungs...41
Figure 3.12 Expression of NKCC1 in SPAK–/– mouse lungs………...…42
Figure 3.13 Phosphorylation of SPAK/OSR1 and NKCC1 in SPAK–/– mouse lungs…………………………………………….…..43
Figure 3.14 Expression of total SPAK/OSR1, p-SPAK/OSR1, total NKCC1, and p-NKCC1 in the lungs, as assessed by immunofluorescence staining………………………………44
Figure 3.15 Animal survival in mice after exposure to hyperoxia……..47
Figure 3.16 Pulmonary edema in mice after exposure to hyperoxia…...48
Figure 3.17 Animal AFC in mice after exposure to hyperoxia…………49
Figure 3.18 Severity of hyperoxia-induced ALI in mice with SPAK or WNK4 gene manipulation………………………………….51
Figure 3.19 Lung tissue micrographs of hyperoxia-induced ALI in mice with SPAK or WNK4 gene manipulation………………......52
Figure 3.20 Neutrophil count of hyperoxia-induced ALI in mice with SPAK or WNK4 gene manipulation………………………..53
Figure 3.21 Lung injury score of hyperoxia-induced ALI in mice with SPAK or WNK4 gene manipulation………………………..54
Figure 3.22 Bronchial–alveolar lavage fluid proteins of hyperoxia-induced ALI in mice with SPAK or WNK4 gene manipulation……………………….………………………..55
Figure 3.23 Activation of the NFB cascade in lung tissues after hyperoxia……………………………………………………58
Figure 3.24 Activation of the p-IKK in lung tissues after hyperoxia….59
Figure 3.25 Expression of the IκB-α in lung tissues after hyperoxia…...60
Figure 3.26 Activation of the p-p65 in lung tissues after hyperoxia…....61
Figure 3.27 Activation of the p-p38 in lung tissues after hyperoxia……62
Figure 3.28 Activation of the p-ERK in lung tissues after hyperoxia…..63
Figure 3.29 Activation of the p-MSK1 in lung tissues after hyperoxia...64
Figure 3.30 Effects of the pharmacological modulation of ion channels on AFC in WT mice………………………………………..…..67
Figure 3.31 Effects of the pharmacological modulation of ion channels on animal survival in WT mice……………………………...…68
Figure 3.32 Effects of the pharmacological modulation of ion channels on AFC in WNK4D561A/+ mice……………………………...…..69
Figure 3.33 Effects of the pharmacological modulation of ion channels on animal survival in WNK4D561A/+ mice…………………...….70
Figure 3.34 Effects of inhaled furosemide on daily urine amount……...72
Figure 3.35 Effects of inhaled furosemide on urinary sodium excretion…………………………………………………….73
Figure 3.36 Proposed mechanism to explain the functional regulation of ENaC and NKCC1 by WNK4 in hyperoxia-induced lung injury………………………………………………………...81
List of tables
Table 1.1 Models of acute lung injury in rodents………………...………3
Table 1.2 Tissue specific anomalies inhuman and mouse with ENaC mutations…………………………………………….………...9
Table 3.1 Summary for survival times by hyperoxia exposure in WT, SPAK-/- and WNK4D561A/+ mice………………………...…….47
Table 3.2 Data for survival times by inhalation in WT and WNKD561A/+ mice…………………………………………………..……....71

References
1.Ahmed M, Salker MS, Elvira B, et al: SPAK Sensitive Regulation of the Epithelial Na Channel ENaC. Kidney Blood Press Res 2015; 40:335-343.
2.Andrade L, Rodrigues AC, Jr., Sanches TR, et al: Leptospirosis leads to dysregulation of sodium transporters in the kidney and lung. Am J Physiol Renal Physiol 2007; 292:F586-592.
3.Baxendale-Cox LM: Terbutaline increases open channel density of epithelial sodium channel (ENaC) in distal lung. Respir Physiol 1999; 116:1-8.
4.Ben-Baruch A, Michiel DF, Oppenheim JJ: Signals and receptors involved in recruitment of inflammatory cells. J Biol Chem 1995; 270:11703-11706.
5.Bianco S, Vaghi A, Pieroni MG, et al: Potentiation of the antireactive, antiasthmatic effect of inhaled furosemide by inhaled lysine acetylsalicylate. Allergy 1993; 48:570-575.
6.Bonny O, Hummler E: Dysfunction of epithelial sodium transport: from human to mouse. Kidney Int 2000; 57:1313-1318.
7.Chen H, Luo J, Kintner DB, et al: Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab 2005; 25:54-66.
8.Chiga M, Rai T, Yang SS, et al: Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 2008; 74:1403-1409.
9.Chu PY, Cheng CJ, Wu YC, et al: SPAK deficiency corrects pseudohypoaldosteronism II caused by WNK4 mutation. PLoS One 2013; 8:e72969.
10.Constantin JM, Jaber S, Futier E, et al: Respiratory effects of different recruitment maneuvers in acute respiratory distress syndrome. Crit Care 2008; 12:R50.
11.Deak M, Clifton AD, Lucocq LM, et al: Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 1998; 17:4426-4441.
12.Delpire E, Gagnon KB: SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochemical Journal 2008; 409:321-331.
13.Delpire E, Lu J, England R, et al: Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 1999; 22:192-195.
14.Egli M, Duplain H, Lepori M, et al: Defective respiratory amiloride-sensitive sodium transport predisposes to pulmonary oedema and delays its resolution in mice. J Physiol 2004; 560:857-865.
15.Eppinger MJ, Deeb GM, Bolling SF, et al: Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol 1997; 150:1773-1784.
16.Fan E, Wilcox ME, Brower RG, et al: Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 2008; 178:1156-1163.
17.Farfel Z, Mayan H, Yaacov Y, et al: WNK4 regulates airway Na+ transport: study of familial hyperkalaemia and hypertension. Eur J Clin Invest 2005; 35:410-415.
18.Ferreira AM, Rollins BJ, Faunce DE, et al: The effect of MCP-1 depletion on chemokine and chemokine-related gene expression: evidence for a complex network in acute inflammation. Cytokine 2005; 30:64-71.
19.Flagella M, Clarke LL, Miller ML, et al: Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 1999; 274:26946-26955.
20.Folkesson HG, Matthay MA: Alveolar epithelial ion and fluid transport: recent progress. Am J Respir Cell Mol Biol 2006; 35:10-19.
21.Frank JA, Wang Y, Osorio O, et al: Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats. J Appl Physiol (1985) 2000; 89:1255-1265.
22.Fronius M: Treatment of pulmonary edema by ENaC activators/stimulators. Curr Mol Pharmacol 2013; 6:13-27.
23.Fukuda N, Folkesson HG, Matthay MA: Relationship of interstitial fluid volume to alveolar fluid clearance in mice: ventilated vs. in situ studies. J Appl Physiol (1985) 2000; 89:672-679.
24.Gagnon KB, Delpire E: Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2012; 92:1577-1617.
25.Gamba G: Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 2005; 85:423-493.
26.Geng Y, Hoke A, Delpire E: The Ste20 kinases Ste20-related proline-alanine-rich kinase and oxidative-stress response 1 regulate NKCC1 function in sensory neurons. Journal of Biological Chemistry 2009; 284:14020-14028.
27.Ghosal S, Taylor CJ, McGaw J: Modification of nasal membrane potential difference with inhaled amiloride and loperamide in the cystic fibrosis (CF) mouse. Thorax 1996; 51:1229-1232.
28.Gordon RD: Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension 1986; 8:93-102.
29.Guerin C, Reignier J, Richard JC, et al: Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368:2159-2168.
30.Herrero R, Tanino M, Smith LS, et al: The Fas/FasL pathway impairs the alveolar fluid clearance in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2013; 305:L377-388.
31.Huang CL, Yang SS, Lin SH: Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 2008; 17:519-525.
32.Hummler E, Barker P, Gatzy J, et al: Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 1996; 12:325-328.
33.Ji W, Fu J, Nie H, et al: Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats. Pediatr Int 2012; 54:735-742.
34.Johnston AM, Naselli G, Gonez LJ, et al: SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene 2000; 19:4290-4297.
35.Karin M, Delhase M: The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 2000; 12:85-98.
36.Kim Y, Kim H, Yoo HY, et al: Suppression of CFTR-mediated Cl secretion of airway epithelium in vitamin C-deficient mice. J Korean Med Sci 2011; 26:317-324.
37.Kopydlowski KM, Salkowski CA, Cody MJ, et al: Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol 1999; 163:1537-1544.
38.Lalioti MD, Zhang J, Volkman HM, et al: Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 2006; 38:1124-1132.
39.Lin SH, Yu IS, Jiang ST, et al: Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci U S A 2011; 108:17538-17543.
40.Lomas-Neira J, Chung CS, Perl M, et al: Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. Am J Physiol Lung Cell Mol Physiol 2006; 290:L51-58.
41.Lytle C, Xu JC, Biemesderfer D, et al: Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol 1995; 269:C1496-1505.
42.Matthay MA: Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189:1301-1308.
43.Matthay MA, Folkesson HG, Clerici C: Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600.
44.Matthay MA, Su X: Pulmonary barriers to pneumonia and sepsis. Nat Med 2007; 13:780-781.
45.Matthay MA, Ware LB, Zimmerman GA: The acute respiratory distress syndrome. J Clin Invest 2012; 122:2731-2740.
46.Matute-Bello G, Frevert CW, Martin TR: Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 295:L379-399.
47.Maus UA, Waelsch K, Kuziel WA, et al: Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 axis. J Immunol 2003; 170:3273-3278.
48.McCormick JA, Yang CL, Ellison DH: WNK kinases and renal sodium transport in health and disease: an integrated view. Hypertension 2008; 51:588-596.
49.Moriguchi T, Urushiyama S, Hisamoto N, et al: WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. Journal of Biological Chemistry 2005; 280:42685-42693.
50.Nguyen M, Pace AJ, Koller BH: Mice lacking NKCC1 are protected from development of bacteremia and hypothermic sepsis secondary to bacterial pneumonia. J Exp Med 2007; 204:1383-1393.
51.Parker JC: Hydraulic conductance of lung endothelial phenotypes and Starling safety factors against edema. Am J Physiol Lung Cell Mol Physiol 2007; 292:L378-380.
52.Perkins GD, Gates S, Park D, et al: The beta agonist lung injury trial prevention. A randomized controlled trial. Am J Respir Crit Care Med 2014; 189:674-683.
53.Perkins GD, McAuley DF, Thickett DR, et al: The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 2006; 173:281-287.
54.Perng WC, Huang KL, Li MH, et al: Glutamine attenuates hyperoxia-induced acute lung injury in mice. Clin Exp Pharmacol Physiol 2010; 37:56-61.
55.Piechotta K, Lu J, Delpire E: Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). Journal of Biological Chemistry 2002; 277:50812-50819.
56.Pittet JF, Lu LN, Morris DG, et al: Reactive nitrogen species inhibit alveolar epithelial fluid transport after hemorrhagic shock in rats. J Immunol 2001; 166:6301-6310.
57.Prabhu VG, Keszler M, Dhanireddy R: Pulmonary function changes after nebulised and intravenous frusemide in ventilated premature infants. Arch Dis Child Fetal Neonatal Ed 1997; 77:F32-35.
58.Randrianarison N, Escoubet B, Ferreira C, et al: beta-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice. J Physiol 2007; 582:777-788.
59.Richardson C, Alessi DR: The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 2008; 121:3293-3304.
60.Ring AM, Cheng SX, Leng Q, et al: WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci U S A 2007a; 104:4020-4024.
61.Ring AM, Leng Q, Rinehart J, et al: An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci U S A 2007b; 104:4025-4029.
62.Russell JM: Sodium-potassium-chloride cotransport. Physiol Rev 2000; 80:211-276.
63.Sakuma T, Suzuki S, Usuda K, et al: Preservation of alveolar epithelial fluid transport mechanisms in rewarmed human lung after severe hypothermia. J Appl Physiol (1985) 1996; 80:1681-1686.
64.Sartori C, Allemann Y, Duplain H, et al: Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med 2002; 346:1631-1636.
65.Sartori C, Matthay MA: Alveolar epithelial fluid transport in acute lung injury: new insights. Eur Respir J 2002; 20:1299-1313.
66.Schmitz ML, Bacher S, Kracht M: I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci 2001; 26:186-190.
67.Sloniewsky DE, Ridge KM, Adir Y, et al: Leukotriene D4 activates alveolar epithelial Na,K-ATPase and increases alveolar fluid clearance. Am J Respir Crit Care Med 2004; 169:407-412.
68.Solymosi EA, Kaestle-Gembardt SM, Vadasz I, et al: Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema. Proc Natl Acad Sci U S A 2013; 110:E2308-2316.
69.Standiford TJ, Ward PA: Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 2015;
70.Tang SE, Wu CP, Wu SY, et al: Stanniocalcin-1 ameliorates lipopolysaccharide-induced pulmonary oxidative stress, inflammation, and apoptosis in mice. Free Radic Biol Med 2014; 71:321-331.
71.Topper JN, Wasserman SM, Anderson KR, et al: Expression of the bumetanide-sensitive Na-K-Cl cotransporter BSC2 is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium. J Clin Invest 1997; 99:2941-2949.
72.Uchida S: Pathophysiological roles of WNK kinases in the kidney. Pflugers Arch 2010; 460:695-702.
73.Vanden Berghe W, Plaisance S, Boone E, et al: p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 1998; 273:3285-3290.
74.Vermeulen L, De Wilde G, Van Damme P, et al: Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). Embo j 2003; 22:1313-1324.
75.Vitari AC, Deak M, Morrice NA, et al: The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochemical Journal 2005; 391:17-24.
76.Vitari AC, Thastrup J, Rafiqi FH, et al: Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochemical Journal 2006; 397:223-231.
77.Ware LB: Modulation of alveolar fluid clearance by acute inflammation: the plot thickens. Am J Respir Crit Care Med 2004; 169:332-333.
78.Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med 2000; 342:1334-1349.
79.Ware LB, Matthay MA: Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 163:1376-1383.
80.Wilson FH, Disse-Nicodeme S, Choate KA, et al: Human hypertension caused by mutations in WNK kinases. Science 2001; 293:1107-1112.
81.Wong HR, Odoms KK, Denenberg AG, et al: Hyperoxia prolongs tumor necrosis factor-alpha-mediated activation of NF-kappaB: role of IkappaB kinase. Shock 2002; 17:274-279.
82.Wu SY, Wu CP, Kang BH, et al: Hypercapnic acidosis attenuates reperfusion injury in isolated and perfused rat lungs. Crit Care Med 2012; 40:553-559.
83.Yan Y, Dalmasso G, Nguyen HT, et al: Nuclear factor-kappaB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation. Am J Pathol 2008; 173:1013-1028.
84.Yan Y, Dalmasso G, Nguyen HT, et al: Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function. PLoS One 2009; 4:e5049.
85.Yan Y, Merlin D: Ste20-related proline/alanine-rich kinase: a novel regulator of intestinal inflammation. World J Gastroenterol 2008; 14:6115-6121.
86.Yang SS, Lo YF, Wu CC, et al: SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010; 21:1868-1877.
87.Yang SS, Morimoto T, Rai T, et al: Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 2007; 5:331-344.
88.Yue P, Zhang C, Lin DH, et al: WNK4 inhibits Ca(2+)-activated big-conductance potassium channels (BK) via mitogen-activated protein kinase-dependent pathway. Biochim Biophys Acta 2013; 1833:2101-2110.
89.Zaher TE, Miller EJ, Morrow DM, et al: Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007; 42:897-908.
90.Zhang Y, Viennois E, Xiao B, et al: Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice. Am J Pathol 2013; 182:1617-1628.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔