跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳孟專
研究生(外文):Chen, Meng-Chuan
論文名稱:厚朴酚對人類膀胱腫瘤的血管新生、癌轉移及預防惡病質產生的效果及機轉探討
論文名稱(外文):Effects and mechanisms of magnolol on tumor angiogenesis, tumor metastasis and prevention of cachexia in human bladder cancer
指導教授:周志中
指導教授(外文):Chou, Tz-Chong
口試委員:張自忠吳彰哲劉凱莉黃惠美周志中
口試委員(外文):Chang, Tsu-ChungWu, Chang-JerLiu, Kai-LiHuang, Huei-MeiChou, Tz-Chong
口試日期:2015-11-27
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:123
中文關鍵詞:厚朴酚血管新生癌轉移缺氧誘導因子惡病質健澤順鉑
外文關鍵詞:magnololangiogenesismetastasishypoxia inducible factor-1 alphacachexiaGemzarCisplatin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:683
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
膀胱癌是國人泌尿道最常見的癌症,然目前臨床上膀胱癌治療藥物的效果仍不甚理想。在癌症生長過程中 hypoxia/HIF-1α 訊息路徑活化對腫瘤血管新生、腫瘤生長、轉移及化療藥物抗性等扮演一關鍵角色。近年來中西醫藥物整合治療癌症的方向已漸被重視,由中藥材「厚朴」中所萃取出的活性成份厚朴酚(magnolol),已證實具有多種藥理作用包括抗發炎及抗癌作用等,然其對膀胱癌的血管新生、腫瘤轉移及是否能改善癌症或化療藥物所誘發之惡病質等至今未有報告。
因此本論文即是要建立一個有效率及完整的癌症研究平台,研究厚朴酚對人類膀胱癌的血管新生、轉移及預防惡病質產生的效果評估及機轉探討:
首先,評估在缺氧狀態下magnolol對抑制膀胱癌及對其重要血管新生訊號傳遞路徑的影響。經由細胞及動物實驗結果呈現,magnolol經由抑制缺氧所誘發的ROS/HIF-1α/VEGF/ VEGFR2訊號傳遞路徑達到抑制腫瘤血管新生;接著,進一步評估在缺氧狀態下magnolol是否藉由調控HIF-1α及其相關的重要癌轉移訊號傳遞達到抑制癌轉移效用。經由細胞及動物實驗結果呈現,magnolol經由抑制HIF-1α/EMT訊號傳遞路徑達到抑制腫瘤癌轉移。最後,評估magnolol與臨床常用化療藥物如健澤(Gemzar)及順鉑(Cisplatin)併用後是否可減輕其副作用及提升膀胱癌之治癒效果,並研究其相關作用機轉。於原位注射動物癌症模式證實,合併給予magnolol可藉由降低FoxO3相關的降解路徑及增加IGF-1相關的生成路徑達到減少癌症及化療藥物所誘發之肌肉萎縮、發炎等副作用。由上述我們一系列研究成果顯示,magnolol對膀胱癌的生長、血管新生、轉移及癌症所誘發之惡病質等皆有明顯的抑制作用。希望從本論文中能提供未來治療膀胱癌一個新的方向。

Bladder cancer is the most common cancer of the urinary tract in Taiwan. However, the current therapeutic drugs used for bladder cancer are still unsatisfied. During the pathogenesis of cancer, the activation of hypoxia/HIF-1α signal pathway plays a key role in tumor angiogenesis, metastasis and development of drug resistance. Magnolol isolated from Magnolia officinalis, a traditional Chinese medicine, has been reported to have a variety of pharmacological activities. Although magnolol exerts an anti-tumor activity, there is little information about the effects of magnolol on angiogenesis, metastasis and cachexia in human bladder cancer.
Thus, the goals of this study are to investigate whether magnolol has a protective effect against angiogenesis, metastasis and cachexia in bladder cancer through a series of in vitro and in vivo studies. Moreover, the underlying mechanisms involved of magnolol are also investigated. Direction and results of research into the following three parts:
First of all, to investigate the effects of magnolol on hypoxia-induced angiogenesis signal pathways in T24 baldder cancer. Our results presented via in vitro and in vivo, magnolol suppresses tumor progression by inhibiting angiogenesis via ROS/HIF-1α/VEGF/VEGFR signaling pathways in human bladder cancer cells. Furthermore, to investigate the anti-metastatic activity of magnolol is associated with regulation of hypoxia-induced HIF-1α/EMT cascade. Our results presented via in vitro and in vivo, magnolol suppresses metastasis via elimination of HIF-1α/ TWIST/EMT cascade, migration and invasion in T24 cells. At last, to investigate the effect of magnolol supplement on chemotherapy-induced muscle atrophy in bladder cancer-bearing mice. Our results have demonstrated that supplementation of magnolol attenuates skeletal muscle atrophy in bladder cancer-bearing mice undergoing chemotherapy via suppression of FoxO3 Activation and induction of IGF-1.
Taken together, our results have demonstrated that magnolol has an inhibitory effect on tumor growth, angiogenesis and metastasis in bladder cancer. Furthermore, magnolol also has a beneficial effect in attenuation of tumor or chemotherapy drug-induced cachexia. Hopefully, from this whole study, we can provide more valuable information about the anti-tumor effects of magnolol in bladder cancer, which may be useful for future development of a potential anti-tumor drug.
List of figures
Abbreviation list
中文摘要
Abstract
Chapter I: Introduction
1.1. Bladder cancer: background and clinical treatment
1.2. Hallmarks of Cancer
1.3. Tumor angiogenesis
1.4. Regulation of HIF-1α
1.5. Tumor metastasis
1.6. Tumor and chemotherapy-induced cachexia
1.7. Role of muscle atrophy-related pathways in cachexia
1.8. Magnolol
1.9. The aim of this thesis
Chapter II: Materials and Methods
2.1. Reagents
2.2. Antibodies
2.3. Cell culture and hypoxic treatment
2.4. Quantitative real-time PCR assay
2.5. Western blotting
2.6. Immunofluorescence assay
2.7. Cell viability assay
2.8. H2O2 measurement
2.9. Chromatin immune precipitation (ChIP) assay
2.10. Enzyme-linked immunosorbent assay (ELISA)
2.11. Co-immunoprecipitation (Co-IP) assay
2.12. Gelatin Zymography Assay
2.13. Cell Migration and Invasion Assay
2.14. Capillary-like tube formation assay
2.15. Chicken chorioallantoic membrane (CAM) assay
2.16. In vivo Matrigel plug angiogenesis assay
2.17. Animal model
2.18. Histological examination and immunohistochemical staining
2.19. Reactive Oxygen Species (ROS) Assay
2.20. Intestinal Function
2.21. Proteasome Activity
2.22. Statistical analysis
Chapter III: Results
3. The aim of this study
3.1. Magnolol inhibits hypoxia-induced HIF-1α expression and transcriptional activity in T24 cells
3.2. Magnolol inhibits hypoxia-induced VEGF expression, VEGFR2 phosphorylation, interaction of VEGF and VEGFR2 in T24 cell
3.3. The PI3K/AKT/mTOR pathway involves hypoxia-induced HIF-1α protein accumulation and VEGF secretion
3.4. Magnolol promoted HIF-1α protein degradation and decreased its protein synthesis in hypoxic T24 cells
3.5. Magnolol inhibits angiogenesis in vitro and semi in vivo
3.6. Magnolol inhibited tumor growth, HIF-1α/VEGF protein expression and the down-stream signaling pathway in a xenograft mouse model
3.7. The proposed schematic diagram of signaling pathways for magnolol-mediated anti-angiogenesis
3.8. Effect of magnolol on EMT-related morphologic changes in hypoxic T24 cells
3.9. Effect of magnolol on MMP-2 and MMP-9 expression
3.10. Magnolol inhibited migration and invasion of hypoxic T24 cells
3.11. Magnolol inhibited tumor metastasis
3.12. The proposed schematic diagram of signaling pathways for magnolol-mediated anti-metastasis in hypoxic T24 cells
3.13. Effects of magnolol on body weight, daily food intake and tumor growth
3.14. Effects of magnolol on intestinal damage and digestive enzyme dysfunction
3.15. Magnolol reduces muscle atrophy and proteasome activity
3.16. Magnolol attenuates muscle atrophy-related gene expression and increases IGF-1-regulated signaling
3.17. Effects of magnolol on pro-inflammatory cytokine production and NF-κB activation
3.18. The proposed schematic diagram of signaling pathways for the anti-cachectic activity of magnolol
Chapter IV: Discussion
Chapter V: Conclusion
Chapter VI: References
Chapter VII: Table and figures
Chapter VIII: Publications
[1]Crawford JM. The origins of bladder cancer. Lab Invest 2008;88:686-93.
[2]O'Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL. Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 1995;55:510-3.
[3]Heney NM, Proppe K, Prout GR, Jr., Griffin PP, Shipley WU. Invasive bladder cancer: tumor configuration, lymphatic invasion and survival. J Urol 1983;130:895-7.
[4]Cohen MH, Rothmann M. Gemcitabine and cisplatin for advanced, metastatic bladder cancer. J Clin Oncol 2001;19:1229-31.
[5]Braun TP, Szumowski M, Levasseur PR, et al. Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS One 2014;9:e106489.
[6]MacDonald V. Chemotherapy: managing side effects and safe handling. Can Vet J 2009;50:665-8.
[7]Fanzani A, Zanola A, Rovetta F, Rossi S, Aleo MF. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems. Toxicol Appl Pharmacol 2011;250:312-21.
[8]Frei E, 3rd. Combination cancer therapy: Presidential address. Cancer Res 1972;32:2593-607.
[9]Calabro F, Sternberg CN. Neoadjuvant and adjuvant chemotherapy in muscle-invasive bladder cancer. Eur Urol 2009;55:348-58.
[10]Raghavan D, Quinn D, Skinner DG, Stein JP. Surgery and adjunctive chemotherapy for invasive bladder cancer. Surg Oncol 2002;11:55-63.
[11]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.
[12]Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer 2015;15:473-83.
[13]Hainaut P, Plymoth A. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 2013;25:50-1.
[14]Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249-57.
[15]Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res 2006;4:601-5.
[16]Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin Oncol 2001;28:36-41.
[17]Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer Metastasis Rev 2004;23:293-310.
[18]Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8:592-603.
[19]Filippi I, Naldini A, Carraro F. Role of the hypoxic microenvironment in the antitumor activity of tyrosine kinase inhibitors. Curr Med Chem 2011;18:2885-92.
[20]Taylor CT, Furuta GT, Synnestvedt K, Colgan SP. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc Natl Acad Sci U S A 2000;97:12091-6.
[21]Damert A, Ikeda E, Risau W. Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J 1997;327 ( Pt 2):419-23.
[22]Rohwer N, Dame C, Haugstetter A, et al. Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS One 2010;5:e12038.
[23]Bae SK, Bae MH, Ahn MY, et al. Egr-1 mediates transcriptional activation of IGF-II gene in response to hypoxia. Cancer Res 1999;59:5989-94.
[24]Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004;9 Suppl 5:10-7.
[25]Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32.
[26]Brahimi-Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 2006;93:E73-80.
[27]Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 2001;15:1312-4.
[28]Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008;15:678-85.
[29]Deniz H, Karakok M, Yagci F, Guldur ME. Evaluation of relationship between HIF-1alpha immunoreactivity and stage, grade, angiogenic profile and proliferative index in bladder urothelial carcinomas. Int Urol Nephrol 2010;42:103-7.
[30]Yang QC, Zeng BF, Shi ZM, et al. Inhibition of hypoxia-induced angiogenesis by trichostatin A via suppression of HIF-1a activity in human osteosarcoma. J Exp Clin Cancer Res 2006;25:593-9.
[31]Nordgren IK, Tavassoli A. Targeting tumour angiogenesis with small molecule inhibitors of hypoxia inducible factor. Chem Soc Rev 2011;40:4307-17.
[32]Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 2005;1755:107-20.
[33]Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468-72.
[34]Kageyama Y, Koshiji M, To KK, Tian YM, Ratcliffe PJ, Huang LE. Leu-574 of human HIF-1alpha is a molecular determinant of prolyl hydroxylation. FASEB J 2004;18:1028-30.
[35]Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001;20:5197-206.
[36]D'Angelo G, Duplan E, Vigne P, Frelin C. Cyclosporin A prevents the hypoxic adaptation by activating hypoxia-inducible factor-1alpha Pro-564 hydroxylation. J Biol Chem 2003;278:15406-11.
[37]Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R. Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett 2008;266:12-20.
[38]Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001;15:2675-86.
[39]Masson N, Singleton RS, Sekirnik R, et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep 2012;13:251-7.
[40]Zimna A, Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int 2015;2015:549412.
[41] Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999;59:5830-5.
[42]Garber K. Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J Natl Cancer Inst 2008;100:232-9.
[43]Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 2005;65:5991-5;
[44]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8.
[45]Yang MH, Wu KJ. TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 2008;7:2090-6.
[46]Donohoe CL, Ryan AM, Reynolds JV. Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract 2011;2011:601434.
[47]Ebner N, Elsner S, Springer J, von Haehling S. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview. Curr Opin Support Palliat Care 2014;8:15-24.
[48]Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2011;16:153-66.
[49]Bonita R, Pradhan R. Cardiovascular toxicities of cancer chemotherapy. Semin Oncol 2013;40:156-67.
[50]Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2012;291:1-9.
[51]von der Maase H, Sengelov L, Roberts JT, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 2005;23:4602-8.
[52]Cognetti F, Ruggeri EM, Felici A, et al. Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann Oncol 2012;23:695-700.
[53]Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 2015;14:58-74.
[54]Acharyya S, Guttridge DC. Cancer cachexia signaling pathways continue to emerge yet much still points to the proteasome. Clin Cancer Res 2007;13:1356-61.
[55]Strucksberg KH, Tangavelou K, Schroder R, Clemen CS. Proteasomal activity in skeletal muscle: a matter of assay design, muscle type, and age. Anal Biochem 2010;399:225-9.
[56]de Palma L, Marinelli M, Pavan M, Orazi A. Ubiquitin ligases MuRF1 and MAFbx in human skeletal muscle atrophy. Joint Bone Spine 2008;75:53-7.
[57]Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 2008;23:160-70.
[58]Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004;18:39-51.
[59]Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294:1704-8.
[60]Lokireddy S, Mouly V, Butler-Browne G, et al. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol 2011;301:C1316-24.
[61]Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 2009;296:C1258-70.
[62]Trendelenburg AU, Meyer A, Jacobi C, Feige JN, Glass DJ. TAK-1/p38/nNFkappaB signaling inhibits myoblast differentiation by increasing levels of Activin A. Skelet Muscle 2012;2:3.
[63] Kaisari S, Rom O, Aizenbud D, Reznick AZ. Involvement of NF-kappaB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes. Adv Exp Med Biol 2013;788:7-17.
[64] Wu CL, Cornwell EW, Jackman RW, Kandarian SC. NF-kappaB but not FoxO sites in the MuRF1 promoter are required for transcriptional activation in disuse muscle atrophy. Am J Physiol Cell Physiol 2014;306:C762-7.
[65]Parekh HS, Liu G, Wei MQ. A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol Cancer 2009;8:21.
[66] Taira J, Ikemoto T, Mimura K, Hagi A, Murakami A, Makino K. Effective inhibition of hydroxyl radicals by hydroxylated biphenyl compounds. Free Radic Res Commun 1993;19 Suppl 1:S71-7.
[67] Shen JL, Man KM, Huang PH, et al. Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules 2010;15:6452-65.
[68] Ai J, Wang X, Nielsen M. Honokiol and magnolol selectively interact with GABAA receptor subtypes in vitro. Pharmacology 2001;63:34-41.
[69] Alexeev M, Grosenbaugh DK, Mott DD, Fisher JL. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 2012;62:2507-14.
[70] Ahn KS, Sethi G, Shishodia S, Sung B, Arbiser JL, Aggarwal BB. Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-kappaB activation pathway. Mol Cancer Res 2006;4:621-33.
[71] Fried LE, Arbiser JL. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 2009;11:1139-48.
[72] Chen F, Wang T, Wu YF, et al. Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol 2004;10:3459-63.
[73] Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 2012;12:1244-52.
[74]Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur J Pharmacol 2003;475:19-27.
[75]Teng CM, Chen CC, Ko FN, et al. Two antiplatelet agents from Magnolia officinalis. Thromb Res 1988;50:757-65.
[76]Ikeda K, Nagase H. Magnolol has the ability to induce apoptosis in tumor cells. Biol Pharm Bull 2002;25:1546-9.
[77]Lin SY, Liu JD, Chang HC, Yeh SD, Lin CH, Lee WS. Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis. J Cell Biochem 2002;84:532-44.
[78]Hwang ES, Park KK. Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem 2010;74:961-7.
[79]Arnaoutova I, George J, Kleinman HK, Benton G. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 2009;12:267-74.
[80]Yu DS, Lee CF, Chang SY. Immunotherapy for orthotopic murine bladder cancer using bacillus Calmette-Guerin recombinant protein Mpt-64. J Urol 2007;177:738-42.
[81]Wu JY, Tsou MY, Chen TH, Chen SJ, Tsao CM, Wu CC. Therapeutic effects of melatonin on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. J Pineal Res 2008;45:106-16.
[82]Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23:1011-27.
[83]Gao N, Ding M, Zheng JZ, et al. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J Biol Chem 2002;277:31963-71.
[84] Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 2009;106:1113-22.
[85]Befani CD, Vlachostergios PJ, Hatzidaki E, et al. Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med (Berl) 2012;90:45-54.
[86]El Gehani K, Al-Kikhia L, Mansuri N, Syrjanen K, Al-Fituri O, Elzagheid A. Angiogenesis in urinary bladder carcinoma as defined by microvessel density (MVD) after immunohistochemical staining for Factor VIII and CD31. Libyan J Med 2011;6.
[87]Loncaster JA, Harris AL, Davidson SE, et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 2001;61:6394-9.
[88]McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist 2000;5 Suppl 1:3-10.
[89]Gontero P, Banisadr S, Frea B, Brausi M. Metastasis markers in bladder cancer: a review of the literature and clinical considerations. Eur Urol 2004;46:296-311.
[90] Maltoni M, Caraceni A, Brunelli C, et al. Prognostic factors in advanced cancer patients: evidence-based clinical recommendations--a study by the Steering Committee of the European Association for Palliative Care. J Clin Oncol 2005;23:6240-8.
[91]Yamamoto H, Ishihara K, Takeda Y, Koizumi W, Ichikawa T. Changes in the mucus barrier during cisplatin-induced intestinal mucositis in rats. Biomed Res Int;2013:276186.
[92]Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 2001;3:1009-13.
[93]Eley HL, Russell ST, Tisdale MJ. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J 2007;407:113-20.
[94]Argiles JM, Busquets S, Lopez-Soriano FJ. The pivotal role of cytokines in muscle wasting during cancer. Int J Biochem Cell Biol 2005;37:2036-46.
[95] Op den Kamp CM, Langen RC, Snepvangers FJ, et al. Nuclear transcription factor kappa B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am J Clin Nutr 2013;98:738-48.
[96] Kim JJ, Lee SB, Jang J, et al. WSB1 promotes tumor metastasis by inducing pVHL degradation. Genes Dev 2015;29:2244-57.
[97]Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7:359-71.
[98] Li Y, Zhang D, Wang X, et al. Hypoxia-inducible miR-182 enhances HIF1alpha signaling via targeting PHD2 and FIH1 in prostate cancer. Sci Rep 2015;5:12495.
[99]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33.
[100]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189-98.
[101]Rezaie P, Mazidi M, Nematy M. Ghrelin, food intake, and botanical extracts: A Review. Avicenna J Phytomed 2015;5:271-81.
[102]Chung H, Kim E, Lee DH, et al. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 2007;148:148-59.
[103]Garcia JM, Cata JP, Dougherty PM, Smith RG. Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia. Endocrinology 2008;149:455-60.
[104]Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 2000;275:40235-43.
[105]Whittemore LA, Song K, Li X, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003;300:965-71.
[106]Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013;45:2333-47.
[107]Aversa Z, Bonetto A, Penna F, et al. Changes in myostatin signaling in non-weight-losing cancer patients. Ann Surg Oncol 2012;19:1350-6.
[108]Costelli P, Muscaritoli M, Bonetto A, et al. Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 2008;38:531-8.
[109]Wolfman NM, McPherron AC, Pappano WN, et al. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci U S A 2003;100:15842-6.
[110]Seiliez I, Taty Taty GC, Bugeon J, Dias K, Sabin N, Gabillard JC. Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting Ubiquitin-Proteasome and Autophagy-Lysosome degradative pathways. Gen Comp Endocrinol 2013;186:9-15.
[111]Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 2008;154:557-68.
[112]Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004;14:395-403.
[113]Lazarus DD, Moldawer LL, Lowry SF. Insulin-like growth factor-1 activity is inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, and interleukin-6. Lymphokine Cytokine Res 1993;12:219-23.
[114]Zhou X, Wang JL, Lu J, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010;142:531-43.
[115]Onesti JK, Guttridge DC. Inflammation based regulation of cancer cachexia. Biomed Res Int 2014;2014:168407.
[116]Narsale AA, Carson JA. Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care 2014;8:321-7.
[117]Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer 2010;46:191-7.
[118]Zheng Z, Zhou L, Gao S, Yang Z, Yao J, Zheng S. Prognostic role of C-reactive protein in hepatocellular carcinoma: a systematic review and meta-analysis. Int J Med Sci 2013;10:653-64.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊