( 您好!臺灣時間:2023/09/24 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Preclinical evaluation of a nano-formulated anti-helminthic, niclosamide, in ovarian cancer
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
背景:卵巢癌仍是婦女健康上的一大威脅並在治療上仍屬困難。治療卵巢癌在臨床上仍有極大挑戰因為多晚期診斷,台灣目前每年平均有每十萬人口中,6.39人罹患卵巢癌,民國92年女性卵巢癌症有833人,而在國民健康署102年的資料來看,一年新增卵巢癌是1321新病例。目前已知已有治療的對策中針對癌細胞代謝是有未來的潛力。多年來耐克螺 (niclosamide)在作用腸道寄生蟲的粒線體抑制上已廣泛研究許多,儘管近來研究顯示耐克螺作用在治療癌症上有多層面的探討,包括抑制腫瘤生長及阻止腫瘤轉移,但是其藥物拒水性難溶於水的特性仍尚待克服。
目的:本研究目的是就新發展的劑型,奈米化耐克螺 (Nano-niclosamide)在治療卵巢癌的臨床前的應用。目前卵巢癌依照特性分成第一型及第二型卵巢癌,第一型包括內膜細胞型及亮細胞癌為主,而第二型卵巢癌則是高度惡性的漿液細胞癌,目前針對癌症幹細胞的癌症治療已經漸被接受,我前團隊實驗室的研究利用癌幹細胞的抑制找尋可能有潛力的抑癌藥物耐克螺,然而耐克螺的難溶於水特性,我們合作的實驗室團隊以雷射電噴霧使耐克螺奈米化方法增加其水溶性,之前已知耐克螺用在治療癌細胞上多方的訊息傳遞路徑。是老藥新用的一個前瞻範例。我們針對奈米化耐克螺的功效,包括抑制癌症細胞生長,癌症細胞的醣解及氧化磷酸化代謝變化,幹細胞特性中球體形成能力,在大鼠中藥物動力學做初步分析研究。

Background: Ovarian cancer still remains the most incurable disease of women health issue. Treatment of ovarian malignancy is still hard due to late diagnosis. There are 1,321 new diagnosed cases in Taiwan. The most common histopathology cell type is serous cystadenocarcinoma about 28% of all the cases. Ovarian cancer treatment remains a clinical obstacle. Recently, targeting cancer cell metabolism represents a new promising strategy. Niclosamide is an old anti-helminthic drug that uncouples the mitochondria of intestinal parasites. Although recent studies demonstrate that niclosamide is a potential anticancer agent that targets multiple pathways for cancer cell growth and metastasis, its poor water solubility needs to be overcome before further preclinical and clinical investigations.
Objectives: The aims of this study were first to investigate there is a pressing need to develop a novel agent for ovarian cancer treatment.
Targeting cancer stem cells has recently become an emerging concept in cancer therapy. Niclosamide was found to show inhibitory activity on human ovarian cancer. However, niclosamide is a hydrophobic drug and is difficulty in dissolving in water and reduces its effects in cancer treatments. Therefore, nanoparticle of niclosamide (nano-niclosamide) was developed to increase the solubility in water. In this study, we constructed a preclinical trial of nano-niclosamide on ovarian cancer. Furthermore, recent studies indicate that Niclosamide exhibits anticancer effects in various human cancers by acting on multiple signaling pathways. Therefore, NI is considered to be an old drug with the potential for new use for cancer. The novel nano-formulation of NI (nano-NI) provides an opportunity for ovarian cancer treatment. Before clinical applications, preclinical efficacy, toxicity, and pharmacokinetic/ pharmacodynamic studies are achieved. In this study, we aimed to evaluate the in vitro and in vivo activity and toxicity of the nano-NI in cell and animal models. We investigated how the novel formulation would affect water solubility and ovarian cell metabolism. Then, we determined the oral bioavailability and pharmacological response of the new formulation. The information gleaned from the present study should pave the way for future clinical investigations.
Results: Nano-niclosamide effectively inhibits the growth of ovarian cancer cells and causes a metabolic shift to glycolysis in vitro, and suppresses tumor growth without obvious toxicity in vivo. Pharmacokinetic study after oral medication, nano-niclosamide reveals fast absorption and a better bioavailability.
Conclusion: Nano-niclosamide has great potential to become a new treatment modality for ovarian cancer. Phase I clinical study may be take into consideration.

誌 謝 III
中文摘要 XI
1.1 Ovarian cancer 1
1.2 Current therapies for ovarian cancer 3
1.3 Cancer stem cells (cancer initiating cells) 4
1.4 Old drug for new use 6
1.5 Nanomedicine in cancer 7
1.6 Niclosamide 8
2.1 Nano-niclosamide inhibit ovarian cancer growth in vitro 11
2.2 Does Nano-niclosamide interrupt ovarian cancer growth in vivo 11
2.3 Toxicity evaluation and bioavilability and pharmacological response of the new formulation nano-Niclosamide. 11
4.1 Preparation of the NI nanosuspension by using a single-capillary electrospray 13
4.2 Nano-niclosamide inhibitory ovarian cancer growth in vitro 14
4.3 Nano-niclosamide interrupt ovarian cancer growth in vivo 18
4.4 Phamacokinetic studies of nano-niclosamide in vivo 20
4.5 Pharmacokinetic animal study 23
4.6 Statistical analyses 25
5.1 Nano-NI suppresses ovarian cancer cell proliferation in vitro 26
5.2 Nano-NI disrupts ovarian cancer cell metabolism 27
5.3 Oral nano-NI inhibits ovarian cancer growth in vivo 28
5.4 Toxicity evaluation of nano-NI in vivo 29
5.5 Bioavailability of nano-NI after oral administration in SD rats 30

1.TAIWAN. HPAMOHAW. Cancer registry annual report, 2013 TAIWAN 2016.
2.Hennessy BT, Coleman RL and Markman M. Ovarian cancer. Lancet. 2009; 374(9698):1371-1382.
3.Huang HS, Chu SC, Hsu CF, Chen PC, Ding DC, Chang MY and Chu TY. Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis. 2015; 36(11):1419-1428.
4.Siegel R, Naishadham D and Jemal A. Cancer statistics, 2013. CA: a cancer journal for clinicians. 2013; 63(1):11-30.
5.Romero I and Bast RC, Jr. Minireview: human ovarian cancer: biology, current management, and paths to personalizing therapy. Endocrinology. 2012; 153(4):1593-1602.
6.Katsumata N, Yasuda M, Takahashi F, Isonishi S, Jobo T, Aoki D, Tsuda H, Sugiyama T, Kodama S, Kimura E, Ochiai K and Noda K. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial. Lancet. 2009; 374(9698):1331-1338.
7.Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM and Baergen R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. J Clin Oncol. 2003; 21(17):3194-3200.
8.Campos SM and Ghosh S. A current review of targeted therapeutics for ovarian cancer. Journal of oncology. 2010; 2010:149362.
9.Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, Mannel RS, Homesley HD, Fowler J, Greer BE, Boente M, Birrer MJ and Liang SX. Incorporation of bevacizumab in the primary treatment of ovarian cancer. The New England journal of medicine. 2011; 365(26):2473-2483.
10.Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, du Bois A, Sehouli J, Kimmig R, Stahle A, Collinson F, Essapen S, et al. A phase 3 trial of bevacizumab in ovarian cancer. The New England journal of medicine. 2011; 365(26):2484-2496.
11.Wang TS, Lei W, Cui W, Wen P, Guo HF, Ding SG, Yang YP, Xu YQ, Lv SW and Zhu YL. A meta-analysis of bevacizumab combined with chemotherapy in the treatment of ovarian cancer. Indian journal of cancer. 2014; 51 Suppl 3:e95-98.
12.Wang YC, Yo YT, Lee HY, Liao YP, Chao TK, Su PH and Lai HC. ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. The American journal of pathology. 2012; 180(3):1159-1169.
13.Liao YP, Chen LY, Huang RL, Su PH, Chan MW, Chang CC, Yu MH, Wang PH, Yen MS, Nephew KP and Lai HC. Hypomethylation signature of tumor-initiating cells predicts poor prognosis of ovarian cancer patients. Human molecular genetics. 2014; 23(7):1894-1906.
14.Chen K, Huang YH and Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta pharmacologica Sinica. 2013; 34(6):732-740.
15.Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH and Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer research. 2008; 68(11):4311-4320.
16.Chong CR and Sullivan DJ, Jr. New uses for old drugs. Nature. 2007; 448(7154):645-646.
17.Yo YT, Lin YW, Wang YC, Balch C, Huang RL, Chan MW, Sytwu HK, Chen CK, Chang CC, Nephew KP, Huang T, Yu MH and Lai HC. Growth inhibition of ovarian tumor-initiating cells by niclosamide. Molecular cancer therapeutics. 2012; 11(8):1703-1712.
18.Wang YC, Chao TK, Chang CC, Yo YT, Yu MH and Lai HC. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PloS one. 2013; 8(9):e74538.
19.Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D, Clary BM, Clay TM, Chen W, Morse MA and Lyerly HK. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer research. 2011; 71(12):4172-4182.
20.Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA and Li Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PloS one. 2011; 6(12):e29290.
21.Li Y, Li PK, Roberts MJ, Arend RC, Samant RS and Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer letters. 2014; 349(1):8-14.
22.Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, Sun X, Wu Y, Zhou J and Pan J. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer research. 2010; 70(6):2516-2527.
23.Ren X, Duan L, He Q, Zhang Z, Zhou Y, Wu D, Pan J, Pei D and Ding K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS medicinal chemistry letters. 2010; 1(9):454-459.
24.Wieland A, Trageser D, Gogolok S, Reinartz R, Hofer H, Keller M, Leinhaas A, Schelle R, Normann S, Klaas L, Waha A, Koch P, Fimmers R, Pietsch T, Yachnis AT, Pincus DW, et al. Anticancer effects of niclosamide in human glioblastoma. Clin Cancer Res. 2013; 19(15):4124-4136.
25.Nielsen SF, Nordestgaard BG and Bojesen SE. Statin Use and Reduced Cancer-Related Mortality. New Engl J Med. 2012; 367(19):1792-1802.
26.Kumar S, Meuter A, Thapa P, Langstraat C, Giri S, Chien J, Rattan R, Cliby W and Shridhar V. Metformin intake is associated with better survival in ovarian cancer A Case-Control Study. Cancer-Am Cancer Soc. 2013; 119(3):555-562.
27.Mozafari MR, Pardakhty A, Azarmi S, Jazayeri JA, Nokhodchi A and Omri A. Role of nanocarrier systems in cancer nanotherapy. Journal of liposome research. 2009; 19(4):310-321.
28.Sezer AD. (2014). Application of Nanotechnology in Drug Delivery.
29.Sabnani MK, Rajan R, Rowland B, Mavinkurve V, Wood LM, Gabizon AA and La-Beck NM. Liposome promotion of tumor growth is associated with angiogenesis and inhibition of antitumor immune responses. Nanomedicine. 2015; 11(2):259-262.
30.Whitesell JK. The Merck Index, 12th Edition, CD-ROM (Macintosh): An encyclopedia of chemicals, drugs & biologicals. J Am Chem Soc. 1998; 120(9):2209-2209.
31.Chen H, Yang Z, Ding C, Chu L, Zhang Y, Terry K, Liu H, Shen Q and Zhou J. Discovery of -Alkylamino Tethered Niclosamide Derivatives as Potent and Orally Bioavailable Anticancer Agents. ACS medicinal chemistry letters. 2013; 4(2):180-185.
32.Gomez-Orellana I. Strategies to improve oral drug bioavailability. Expert opinion on drug delivery. 2005; 2(3):419-433.
33.Vasconcelos T, Sarmento B and Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007; 12(23-24):1068-1075.
34.Sahoo SK, Dilnawaz F and Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008; 13(3-4):144-151.
35.Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA and Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Advanced drug delivery reviews. 2010; 62(4-5):547-559.
36.Bai M-Y and Yang H-C. Fabrication of novel niclosamide-suspension using an electrospray system to improve its therapeutic effects in ovarian cancer cells in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013; 419:248-256.
37.Liu KC, Yo YT, Huang RL, Wang YC, Liao YP, Huang TS, Chao TK, Lin CK, Weng SJ, Ma KH, Chang CC, Yu MH and Lai HC. Ovarian cancer stem-like cells show induced translineage-differentiation capacity and are suppressed by alkaline phosphatase inhibitor. Oncotarget. 2013; 4(12):2366-2382.
38.Liao MH, Shih CC, Tsao CM, Chen SJ and Wu CC. RhoA/Rho-kinase and nitric oxide in vascular reactivity in rats with endotoxaemia. PloS one. 2013; 8(2):e56331.
39.Shargel L, Wu-Pong S and Yu ABC. (2005). Applied Biopharmaceutics and Pharmacokinetics. (McGraw-Hill Co: Inc. Boston).
40.Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS and Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology and therapeutics. 2008; 83(5):761-769.
41.Liu YY, Miyoshi H and Nakamura M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 2007; 120(12):2527-2537.
42.Wang S, Su R, Nie S, Sun M, Zhang J, Wu D and Moustaid-Moussa N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of nutritional biochemistry. 2014; 25(4):363-376.
43.Azim HA, Jr., de Azambuja E, Colozza M, Bines J and Piccart MJ. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2011; 22(9):1939-1947.
44.Uziely B, Jeffers S, Isacson R, Kutsch K, Wei-Tsao D, Yehoshua Z, Libson E, Muggia FM and Gabizon A. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol. 1995; 13(7):1777-1785.
45.Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R and Rochlitz C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. The Lancet Oncology. 2012; 13(12):1234-1241.
46.Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, Fichtner I, Schlag PM, Shoemaker RH and Stein U. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. Journal of the National Cancer Institute. 2011; 103(13):1018-1036.
47.Hanslick JL, Lau K, Noguchi KK, Olney JW, Zorumski CF, Mennerick S and Farber NB. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiology of disease. 2009; 34(1):1-10.
48.Arend RC, Londono-Joshi AI, Samant RS, Li Y, Conner M, Hidalgo B, Alvarez RD, Landen CN, Straughn JM and Buchsbaum DJ. Inhibition of Wnt/beta-catenin pathway by niclosamide: a therapeutic target for ovarian cancer. Gynecologic oncology. 2014; 134(1):112-120.
49.Li R, You S, Hu Z, Chen ZG, Sica GL, Khuri FR, Curran WJ, Shin DM and Deng X. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PloS one. 2013; 8(9):e74670.
50.Fonseca BD, Diering GH, Bidinosti MA, Dalal K, Alain T, Balgi AD, Forestieri R, Nodwell M, Rajadurai CV, Gunaratnam C, Tee AR, Duong F, Andersen RJ, Orlowski J, Numata M, Sonenberg N, et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. The Journal of biological chemistry. 2012; 287(21):17530-17545.
51.Robinson E, Nandi M, Wilkinson LL, Arrowsmith DM, Curtis ADM and Richardson A. Preclinical evaluation of statins as a treatment for ovarian cancer. Gynecologic oncology. 2013; 129(2):417-424.
52.Cairns RA, Harris IS and Mak TW. Regulation of cancer cell metabolism. Nature reviews Cancer. 2011; 11(2):85-95.
53.Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-674.
54.Tennant DA, Duran RV and Gottlieb E. Targeting metabolic transformation for cancer therapy. Nature Reviews Cancer. 2010; 10(4):267-277.
55.Zhao Y, Butler EB and Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013; 4.
56.Foley OW, Rauh-Hain JA and del Carmen MG. Recurrent epithelial ovarian cancer: an update on treatment. Oncology (Williston Park). 2013; 27(4):288-294, 298.
57.Pfisterer J, Plante M, Vergote I, du Bois A, Hirte H, Lacave AJ, Wagner U, Stahle A, Stuart G, Kimmig R, Olbricht S, Le T, Emerich J, Kuhn W, Bentley J, Jackisch C, et al. Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: An intergroup trial of the AGO-OVAR, the NCICCTG, and the EORTC GCG. J Clin Oncol. 2006; 24(29):4699-4707.
58.Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J and Nycum LR. OCEANS: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Chemotherapy With or Without Bevacizumab in Patients With Platinum-Sensitive Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. J Clin Oncol. 2012; 30(17):2039-2045.
59.Rose PG, Blessing JA, Ball HG, Hoffman J, Warshal D, DeGeest K and Moore DH. A phase II study of docetaxel in paclitaxel-resistant ovarian and peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic oncology. 2003; 88(2):130-135.
60.Petru E, Angleitner-Boubenizek L, Reinthaller A, Deibl M, Zeimet AG, Volgger B, Stempfl A and Marth C. Combined PEG liposomal doxorubicin and gemcitabine are active and have acceptable toxicity in patients with platinum-refractory and -resistant ovarian cancer after previous platinum-taxane therapy: a phase II Austrian AGO study. Gynecologic oncology. 2006; 102(2):226-229.

第一頁 上一頁 下一頁 最後一頁 top