跳到主要內容

臺灣博碩士論文加值系統

(44.210.151.5) 您好!臺灣時間:2024/07/13 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施權哲
研究生(外文):Cyuan-Jhe Shih
論文名稱:在準度量空間上滿足循環梅厄基勒收縮函數之定點定理
論文名稱(外文):Fixed point theorem for the cyclic Meir-Keeler contractions on metric-like spaces.
指導教授:陳啟銘
指導教授(外文):Chi-Ming Chen
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:26
中文關鍵詞:固定點定理循環梅厄基勒準度量空間
外文關鍵詞:Fixed point theoremscyclic Meir-Keelermetric-like spaces
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇文章中,通過使用循環和梅厄 - 基勒的函數,並將其合併成在準度量空間中的循環梅厄 - 基勒型收縮型函數
然後在準度量空間中套討此函數是否可以找到固定點
In this article, by using the cyclic represtation and Meir-Keeler type
mappings, we introduce two kinds of cyclic Meir-Keeler type contractions
and then establish some new fixed theorems for these cyclic Meir-Keeler
type contractions defined on a metric-like space X with a cyclic represen
tation of X. Our results generalize and improve many recent fixed point
theorems for generalized cyclic contractive mappings in the literature.

書名,作者名,摘要----------1
使用的函數及空間的背景-----2
主要成果------------------8
參考文獻-----------------24
[1] T. Abdeljawad, Fixed points for generalized weakly contractive map
pings in partial metric spaces, Mathematical and Computer Modelling,
vol.54(2011),no.11-12, pp. 2923–2927.
[2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic
generalized contractions in partial metric spaces, Fixed Point Theory and
Appl. (2012), 2012:40.
[3] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on
partial metric spaces, Fixed Point Theory and Appl. (2011), Article ID
508730, 10 pages, 2011.
[4] A Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points,
Fixed Point Theory and Appl. (2012), Article ID 2012, 2012:204.
[5] H. Aydi, Fixed point results for weakly contractive mappings in ordered
partial metric spaces, Journal of Advanced Mathematical Studies, 4(2011),
no. 2, pp. 1–12.
[6] S. Banach, Sur les op´erations dans les ensembles abstraits et leur applica
tion aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
[7] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction prin
ciple in partial metric spaces, Mathematical and Computer Modelling,
55(2012),no. 5-6, pp. 1673–1681.
[8] E. Karapinar, Generalizations of Caristi Kirks theorem on partial metric
spaces, Fixed Point Theory and Applications, vol. 2011, article 4, 2011.
[9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial
metric spaces, Appl. Math. Inf. Sci. 6 (2012), 239-244.
[10] E. Karapinar, P. Salimi, Dislocated metric space to metric spaces with some
fixed point theorems, Fixed Point Theory and Appl. (2013), 2013:222
[11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings sat
isfying cyclical contractive conditions, Fixed Point Theory. Vol.4 no.1
(2003), 79-89.
[12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on
General Topology and Applications, Ann. New York Aced. Sci. 728 (1994)
183–197.
[13] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal.
Appl. 28(1969), 326–329.
[14] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces,
Rend. Istid Math. Univ. Trieste. 36 (2004) 17–26.
[15] I.A. Rus, Cyclic representations and fixed points, Ann. T. Popoviciu, Sem
inar Funct. Eq. Approx. Convexity, 3 171–178 (2005)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top