(3.237.178.91) 您好!臺灣時間:2021/03/07 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭美伶
研究生(外文):Mei-Ling Kuo
論文名稱:通風及蔗糖濃度對帝王花(Protea cynaroides L.)組培苗之器官發生的影響
論文名稱(外文):The Effects of Ventilation and Sucrose Concentration on the Organogenesis of Protea Cynaroides L. Microshoots in Vitro
指導教授:吳澔群吳澔群引用關係
指導教授(外文):How-Chiun Wu
口試委員:林俊宏楊禮亘
口試日期:2016-06-23
學位類別:碩士
校院名稱:南華大學
系所名稱:自然生物科技學系自然療癒碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:80
中文關鍵詞:自然通風強制通風蔗糖組織培養
外文關鍵詞:forced ventilationnatural ventilationsucroseplant tissue culture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
  本研究目的為探討不同的通風及蔗糖濃度對帝王花(Protea cynaroides L.)組培苗的生長影響。本研究採用自然通風(對照組)及強制通風(2 min/2 h及2 min/4 h)三種不同的通風處理及10 g.L-1和30 g.L-1兩種不同的蔗糖濃度對帝王花組培苗的生長影響,以分析帝王花的芽數、芽長度、葉面積、葉綠素、葉綠素螢光、鮮重、總酚及總抗氧化能力之測定。研究結果顯示,芽數最高為10 g.L-1蔗糖的強制通風(2 min/2 h)處理,最低為10 g.L-1 自然通風(對照組)處理,兩者間有顯著性差異。芽長度生長狀態最佳處理為10 g.L-1蔗糖的強制通風(2 min/4 h)處理,最低為10 g.L-1 自然通風與強制通風(2 min/2 h)處理。研究也發現,不論是在10 g.L-1或30 g.L-1的蔗糖濃度,強制通風(2 min/4 h)的處理在葉面積,結果顯示其生長影響為最佳。接著,在自然通風(對照組)及強制通風(2 min/2 h及2 min/4 h)三種不同通風處理,30 g.L-1蔗糖處理組的葉綠素含量都高於10 g.L-1蔗糖處理組,兩者之間有顯著性差異。研究證實葉綠素會因不同的通風時間及蔗糖濃度,而受到影響。另外,在葉綠素螢光(Fv/Fm值)的研究結果顯示,Fv/Fm值最高的處理為30 g.L-1蔗糖的強制通風(2 min/4 h),Fv/Fm值最低的處理為30 g.L-1蔗糖的自然通風(對照組),兩者間有顯著性差異。在鮮重的實驗結果顯示,最重的處理為30 g.L-1蔗糖的強制通風(2 min/2 h)處理,最輕的處理為10 g.L-1蔗糖的強制通風(2 min/2 h)處理。接著,在總酚的實驗結果顯示,30 g.L-1蔗糖處理的多酚類都高於10 g.L-1蔗糖組,表示帝王花會因蔗糖濃度的高低而影響多酚類的含量。在總抗氧化能力的實驗分析研究結果顯示,在強制通風(2 min/2 h、2 min/4 h)的處理,30 g.L-1蔗糖條件的清除DPPH自由基能力高於10 g.L-1蔗糖組,表示清除DPPH自由基能力高低會因不同的通風及蔗糖濃度而受到影響。本研究結果顯示不同通風處理與蔗糖濃度會影響帝王花組培苗之生長。
  The aim of this study was to investigate the effects of different ventilation treatments and sucrose concentrations on the growth and development of Protea cynaroides L. microshoots in vitro. Three different ventilation treatments were used: microshoots were either ventilated naturally (control), forced ventilated for 2 min/2 h, or 2 min/4 h. In addition, two sucrose concentrations were used in the growth medium: 30 g.L-1 and 10 g.L-1. The following data were collected: number of buds, bud length, leaf area, chlorophyll content, chlorophyll fluorescence, fresh weight, total phenol content, and DPPH free radical scavenging activity.
  Results showed that the highest number of buds were formed in microshoots cultured in 10 g.L-1 sucrose that were forced ventilated for 2 min/2 h, which were significantly higher than those grown in 10 g.L-1 sucrose in the natural ventilation treatment (control). Microshoots cultured in 10 g.L-1 sucrose with 2 min/4 h forced ventilation produced the longest buds, whereas the shortest buds were found in the 2 min/2 h forced ventilation treatment cultured in the 10 g.L-1 sucrose. In addition, microshoots that formed the largest leaves were found in the 2 min/4 h forced ventilation treatment, irrespective of the sucrose concentration. These microshoots produced significantly higher leaf areas than microshoots in the other ventilation treatments. Furthermore, chlorophyll content were significantly higher in leaves of microshoots that were cultured in 30 g.L-1 sucrose compared to those grown in 10 g.L-1 sucrose, irrespective of the ventilation treatment.
  Moreover, analysis of chlorophyll fluorescence of the leaves revealed that the highest Fv/Fm value was observed on microshoots that were forced ventilated for 2 min/4 h in the 30 g.L-1 sucrose treatment, which was significantly higher than microshoots cultured in 30 g.L-1 sucrose in the control treatment (natural ventilation). With regard to the fresh weight of the microshoots, the highest fresh weight was found in the 30 g.L-1 sucrose treatment that was forced ventilated for 2 min/2 h, while microshoots cultured in 10 g.L-1 sucrose in same forced ventilation treatment had the lowest fresh weight. The total phenol content of the microshoots was highest all the 30 g.L-1 sucrose treatments, irrespective of the ventilation treatment, which indicated the strong effects of sucrose concentration on phenolic compounds production in P. cynaroides microshoots. Similarly, the highest DPPH radical scavenging activity were detected in the 30 g.L-1 sucrose concentration treatments in all the ventilation treatments, particularly in those that were forced ventilated for 2 min/2 h and 2 min/4 h. These results suggest that sucrose concentration affected total phenol production and DPPH activities in P. cynaroides microshoots. In general, the ventilation and sucrose treatments used in this study clearly demonstrated their effects on the growth and development of P. cynaroides microshoots.
致謝 i
Abstract ii
摘要 v
Table of Contents vii
List of Tables x
List of Figures xi

Chapter 1
Introduction 1
1.1 Research background 1
1.2 Aim of this research study 2
Chapter 2
Literature Review 4
2.1 Plant tissue culture 4
2.2 Protea cynaroides L. 5
2.3 In vitro culture of P. cynaroides explants 10
2.4 Photomixotrophic micropropagation 12
2.5 Ventilation of culture vessel 13
2.5.1 Natural ventilation 14
2.5.2 Forced ventilation 15
2.6 Chlorophyll fluorescence 16
Chapter 3
Materials and Methods 20
3.1 Chemicals 20
3.2 Plant material, growth medium, and growth conditions 21
3.3 Sucrose and ventilation treatments 22
3.4 Determination of chlorophyll fluorescence 24
3.5 Determination of total phenol content 25
3.6 Determination of DPPH radical scavenging activity 26
3.7 Statistical Analysis 27
Chapter 4
Results 32
Chapter 5
Discussion 51
Chapter 6
Conclusion 64
Research Limitations 65
References 66
Abbott, A. J., Belcher, A., (1980). Analysis of gases in culture flasks. In Report Long Ashton Research Station, 79. Dawson & Goodall Ltd., The Mendip Press.
Ben-Jaacov, J., Jacobs, G. (1986). Establishing Protea, Leucospermum and Serruria in vitro. Acta Horticulturae, 185: 39-52.
Blois, M.S., (1958). Antioxidant determinations by the use of a stable free radical. Nature, 26:1199–1200.
Bryant, J. P., Chapin, F. S., Klein, D.R. (1983). Carbon/nutrient balance of boreol plants in relation to vertebrate herbivory. Oikos, 40:357-368.
Capellades, M., Lemeur, L., Debergh, P. (1991). Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant, Cell, Tissue, and Organ Culture, 25:21-26.
Cao, X., Fordham. I., Douglass L., Hammerschlag, F. (2003). Sucrose level influences micropropagation and gene delivery into leaves from in vitro propagated highbush blueberry shoots. Plant, Tissue, Organ, and Cell Culture, 75:255-259.
Coruzzi, G.M., Zhou, L. (2001). Carbon and nitrogen sensing and signaling in plants: Emerging ‘matrix effects’. Current Opinion in Plant Biology, 4:247-253.
Cui, X. –H., Murthy, H. N., Paek, K. –Y. (2014). Production of adventitious root biomass and bioactive compounds from Hypericum perforatum L. through large scale bioreactor cultures. In K. –Y. Paek, H. N. Murthy, & J. –J. Zhong (Eds), Production of biomass and bioactive compounds using bioreactor technology (chap. 11, pp. 251-283). London: Springer.
Curtis, O. F., Shetty, K. (1996). Growth medium effects on vitrifica- tion, total phenolics, chlorophyll, and water content of in vitro propagated oregano clones. Acta Horticulturae, 426:489-504.
Dorrington, P. (2009). Protea Newsletter International, Volume 2, Number 1. International Protea Working Group. Hawaii, USA.
Gabryszewska, E. (2009). Rola regulatorów wzrostu, węglowodanów, soli mineralnych, glutationu i temperatury w rozmnażaniu in vitro piwonii chińskiej. Zesz. Nauk. Inst. Sadow. Kwiac. Monografie i Rozprawy, 190.
Gabryszewska, E. (2011). Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro. Journal of Fruit and Ornamental Plant Research, 19(2):133-148.
Genty, B., Briantais, J. M., Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990:87-92.
Goncalves, J. F. C., Santos, U. M. Jr., Nina, A. R. Jr., Che-Vreuil, L. R. (2007). Energetic flux and performance index in copaiba (Copaifera multijuga Hayne) and mahogany (Swietenia macrophylla King) seedlings grown under two irradiance environments. Brazilian Journal of Plant Physiology, 19:171-184.
Govindjee (1995). Sixty-three years since Kautsky: Chlorophylla fluorescence. Australian Journal of Plant Physiology, 22:131-160.
Grout, B. W. W., Donkin, M. E. (1987). Photosynthetic Activity of Cauliflower Meristem Cultures in Vitro and at Transplanting into Soil. Acta Horticulturae, 212:323-327.
Hassankhah, K., Vahdati, K., Lofti, M., Mirmasoumi, M., Preece, J., Assareh, M. H. (2014). Effects of Ventilation and Sucrose Concentrations on the Growth and Plantlet Anatomy of Micropropagated Persian Walnut Plants. International Journal of Horticultural Science and Technology, 1(2):111-120.
Hazarika, B. N. (2006). Morphophysiological disorders in in vitro culture of plants. Scientia Horticulturae, 108:105-120.
Hazarika, B. N., Parthasarathy, V. A., Nagaraju, V. (2004). Influence of in Vitro Preconditioning of Citrus Sp. Microshoots with Sucrose on their ex Vitro Establishment. Indian Journal of Horticulture, 61:29-31.
Hdider, C., Desjardins, Y. (1994). Effect of sucrose on photosynthesis and phosphoe-nolpyruvate carboxylase activity of in vitro culture strawberry plantlets. Plant, Cell, Tissue, and Organ Culture, 36:27-33.
Heo, J., Kozai, T. (1999). Forced ventilation micropropagation system for enhancing photosynthesis, growth, and development of sweetpotato pantlets. Environmental Control in Biology, 37(1):83-92.
Julkunen-Tiitto, R. (1996). Defensive efforts of Salix myrsinifolia plantlets in photomixotrophic culture conditions: The effect of sucrose, nitrogen and pH on the phytomass and secondary phenolic accumulation. Ecoscience, 3:297-303.
Kozai, T., Koyama, Y., Watanabe, I. (2002). Multiplication of Potato Plantlets in Vitro with Sugar-Free Medium Under High Photosynthetic Photon Flux. Acta Horticulturae, 230:121-128.
Krouk, G., Ruffel, S., Gutiérrez, R. A., Gojon, A., Crawford, N. M., Coruzzi, G.M., Lacombe, B. (2011). A framework intergrating plant growth with hormones and nutrients. Trends in Plant Science, 16:178-182
Langford, P. J., Wainwright, H. (1987). Effects of sucrose concentration on the photosynthetic ability of rose shoots in vitro. Annals of Botany, 60:633-640.
Liao, F., Wang, B., Zhang, M., Xu, F., Lian, F. (2007). Response to sucrosefree culture and diffusive ventilation of plantlets in vitro of Gerbera jamesonii and photoautotrophic growth potential. Acta Horticulturae, 764:257-264.
Littlejohn, G. M., van den Berg, G. C., Matlhoahela, P. (2003). Within plant distribution of macronutrients in Protea ‘Cardinal’. Acta Horticulturae, 602:93-98.
Lloyd G., McCown B.H. (1981). Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by shoot tip culture. Proceedings of the International Plant Propagators’ Society, 30:421-427.
Lucchesini, M., Monteforti, G., Mensuali-Sodi, A., Serra, G. (2006). Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions. Plant Biology, 50:161-168.
Martins, J. P. R., Pasqual, M., Martins, A. D., Ribera, S. F. (2015). Effects of salts and sucrose concentrations on in vitro propagation of Billbergia zebrina (Herbert) Lindley (Bromeliaceae). Australian Journal of Crop Science, 9(1):85-91.
Maxwell, K., Johnson, G.N. (2000). Chlorophyll fluorescence-a practical guide, Journal of Experimental Botany, 51:659–668.
Misra, A. N., Misra, M., Singh, R. (2012). Chlorophyll Fluorescence in Plant Biology. In A.N. Misra (ed.), Biophysics. (Chap. 7, pp. 171-192). In Tech Publishers, Croatia.
Mohamed, M. A. –H., Alsadon, A. A. (2010). Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Scientia Horticulturae, 123:295-300.
Molero, G., Lopes, M. (2012). Gas exchange and chlorophyll fluorescence. In A. Pask, J. Pietragalla, D. Mullan, M. Reynolds (Eds.), Physiological breeding II: A field guide to wheat phenotyping. (Chap. 13, pp. 63-70). Mexico, D.F.: CIMMYT.
Montarone, M., Allemand, P. (1995). Growing Proteaceae soilless under shelter. Acta Horticulturae, 387:73-84.
Mosaleeyanon, K., Cha-um, S., Kirdmanee, C. (2004). Enhanced growth and photosynthesis of rain tree (Samanea saman Merr.) plantlets in vitro under a CO2-enriched condition with decreased sucrose concentrations in the medium. Scientia Horticulturae, 103:51-63.
Paterson-Jones, C. (2007). Protea. Struik Publishers, ISBN 1770075240, Cape Town, South Africa.
Paterson-Jones, C. (2000). The Protea family in Southern Africa. Struik Publishers, Cape Town.
Rahayu, E. S., Habibah, N. A. (2015). In vitro shoot multiplication of Feronia limonia (L.) Swingle in a CO2 enrichment and sucrose reduction culture. Proceedings of International Conference on Conservation for Better Life, 231-241.
Rahman, M. H., Alsadon, A. A. (2007). Photoautotrophic and Photomixotrophic Micropropagation of Three Potato Cultivars. Journal of Biological Science, 15:111-116.
Richardson, A. D., Duigan, S. P., Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153:185-194.
Ritchie, G. A. (2006). Chlorophyll Fluorescence: What is it and what do the numbers mean? In L.E. Riley, R.K. Dumroese, T.D. Landis (ed.), USDA Forest Service Proceedings (pp. 34-43). Fort Collins, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Rubio, V., Bustos, R., Irigoyen, M. L., Cardona-Lopez, X., Rojas-Triana, M., Paz-Ares, J. (2009). Plant hormones and nutrient signaling. Plant Molecular Biology, 69:361–373.
Silber, A., Mitchnick, B., Ben-Jaacov, J. (2001). Phosphorous nutrition and rhizosphere pH in Leucadendron ‘Safari Sunset’. Acta Horticulturae, 545:135-143.
Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phoshomolybdiic-phoshotungstic acid reagents. American Journal of Enology and Viticulture, 16:144-158.
Solárová, J., Pospíšilová, J. (1997). Effect of carbon dioxide enrichment during in vitro cultivation and acclimation to ex vitro conditions. Biologia Plantarum, 39:23-30.
Solárová, J., Pospíšilová, J., Catsky, J., Santrucek, J. (1989). Photosynthesis and growth of tobacco plantlets independence on carbon supply. Photosynthetica, 23:629-637.
Taylor, J. L. S., Van, S. J. (2001). The effect of nitrogen and sucrose con- centration on the growth of Eucomis autumnalis (Mill.) Chitt. plantlets in vitro, and on subsequent anti- inflammatory activity in extracts prepared from the plantlets. Plant Growth Regulation, 34:49-56.
Tichá, I. (1996). Optimization of photoautotrophic tobacco in vitro culture: effect of suncaps closures on plantlet growth. Photosynthetica, 32:475-479.
Watt, M. P. (2012). The status of temporary immersion system (TIS) technology for plant micropropagation. African Journal of Biotechnology 11(76):14025-14035.
Wojtania, A., Wegrzynowicz-Lesiak, E., Dziurka, M., Waligorski, P. (2015). Sucrose and cytokinin interactions in relation to ethylene and abscisic acid production in the regulation of morphogenesis in Pelargonium x Hortorum L. H. Bailey in vitro. Acta Biologica Cracoviensia Series Botanica, 57(1):62-69.
Wojtania, A., Skrzypek, E., Gabryszewska, E. (2015). Effect of cytokinin, sucrose and nitrogen salts concentrations on the growth and development and phenolic content in Magnolia × soulangiana ‘Coates’ shoots in vitro. Acta Scientiarum Polonorum: Hortorum Cultus, 14(3):51-62.
Wu, H. C., du Toit, E. S. (2004). Reducing oxidative browning during in vitro establishment of Protea cynaroides. Scientia Horticulturae, 100:355-358.
Wu, H. C., du Toit, E. S. (2006). Etiolation aids rooting of P. cynaroides cuttings. South African Journal of Plant and Soil,23(4):315-316.
Wu, H. C., du Toit, E. S. (2010). Effects of temperature, light conditions and gibberellic acid on the in vitro germination of Protea cynaroides L. embryos. African Journal of Biotechnology, 9(47):8032-8037.
Wu, H. C., du Toit, E. S. (2011). Role and significance of total phenols during rooting of Protea cynaroides L. cuttings. African Journal of Biotechnology, 10(59):12542-12546.
Wu, H. C., du Toit, E. S. (2012a). In vitro multiplication of Protea cynaroides L. microshoots and the effects of high phosphorous concentration on explant growth. African Journal of Biotechnology, 11(63):12630-12633.
Wu, H. C., du Toit, E. S. (2012b). In vitro organogenesis of Protea cynaroides L. shoot-buds cultured under red and blue light-emitting diodes. In: K Sato (ed.). Embryogenesis. (pp. 151-166). Intech - Open Access Publishers, Croatia.
Wu, H. C., du Toit, E. S., Reinhardt, C. F. (2007a). A protocol for direct somatic embryogenesis of Protea cynaroides L. using zygotic embryos and cotyledon tissues. Plant Cell, Tissue and Organ Culture, 89:217-224.
Wu, H. C., du Toit, E. S., Reinhardt, C. F. (2007b). Micrografting of Protea cynaroides. Plant Cell, Tissue and Organ Culture, 89(1):23-28.
Wu, H. C., du Toit, E. S., Reinhardt, C. F., Rimando, A. M., van der Kooy, F., Meyer, J. J. M. (2007c). The phenolic, 3,4-dihydroxybenzoic acid is an endogenous regulator of rooting in Protea cynaroides. Plant Growth Regulation, 52:207-215.
Wu, H. C., Lin, C. C. (2012). Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. Hortscience, 47(10):1490-1494.
Wu, H. C., Lin, C. C. (2013). Carbon dioxide enrichment during photoautotrophic micropropagation of Protea cynaroides L. plantlets improves in vitro growth, net photosynthetic rate, and acclimatization. Hortscience, 48(10):1293-1297.
Xiao, Y., He, L., Liu, T., Yang, Y. (2005). Growth promotion of gerbera plantlets in large vessels by using photoautotrophic micropropagation system with forced ventilation. Propagation of Ornamental Plants, 5:179-185.
Xiao, Y., Lok, Y., Kozai, T. (2003). Photoautotrophic growth of sugarcane in vitro as affected by photosynthetic photon flux and vessel air exchanges. In Vitro Cellular and Developmental – Plant, 39:186-192.
Xiao, Y., Kozai, T. (2004). Commercial application of a photoautotrophic micropropagation system using large vessels with forced ventilation: plantlet growth and production cost. Horticultural Science, 39:1387-1391.
Yildiz, M., Onde, S., Ozgen, M. (2007). Sucrose Effects On Phenolic Concentration and Plant Regeneration From Sugarbeet Leaf and Petiole Explants. Journal of Sugar Beet Research, 44(1):1-15.
Yokota, S., Karim, Md.Z., Mustafa, A.K., Rahman, M.A.K., Eizawa, J., Saito, Y., Ishiguri, F., Iizuka, K., Yahara, S., Yoshizawa, N. (2007). Histological observation of changes in leaf structure during successive micropropagation stages in Aralia elata and Phellodendron amurense. Plant Biotechnology, 24:221–226.
Zhang, M., Zhao, D., Ma, Z., Li, X., Xiao, Y. (2009). Growth and photosynthethetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity. Horticultural Science, 44:757-763.
Zobayed, S. (2005). Ventilation in micropropagation. In S.M.A Zobayed, T. Kozai, F. Afreen (Ed.), Photoautotrophic (sugar- free medium) micropropagation as a new micropropagation and transplant production system (chap. 9, pp 147-186). Netherlands, Springer.
Zobayed, S. M. A., Kubota, C., Kozai, T. (1999). Development of forced ventilation micropropagation system for large-scale photoautotrophic culture and its utilization in sweet potato. In Vitro Cellular and Developmental Biology – Plant, 35:350-355.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔