跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹凱如
研究生(外文):Jhan, Kai-Ru
論文名稱:永磁馬達的設計
論文名稱(外文):Design of Permanent Magnet Motor
指導教授:林瑞裕
指導教授(外文):Lin, Ruey-Yue
口試委員:茆尚勳陳正虎
口試委員(外文):Mao, Shang-HsunChen, Cheng-Hu
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:機械與機電工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:永磁馬達有限元素分析轉子設計
外文關鍵詞:permanent magnet motorfinite element analysisrotor design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
雖然永磁馬達整體市佔率不如傳統感應馬達,但在工業、家電和最近備受關注的電動車動力系統都有舉足輕重的地位,因永磁馬達不同於感應馬達,沒有轉子側的銅損不會造成效率耗損,有較高的功率密度可節省安裝空間,且低轉動慣量可提升響應,縮短加減速時間有良好的加速性能,因此在上述應用中有蓬勃發展的趨勢。但永磁馬達在低速時受到頓轉轉矩的影響,有較大的振動噪音與轉矩波動,為了改善此問題不論是表面黏貼式(Surface mounted Permanent Magnet, SPM)馬達,還是結構較穩固的內藏式(Interior Permanent Magnet, IPM)馬達,皆有透過修弧之設計手法改善輸出轉矩的特性,但經修弧後的轉子無法進行二次加工,處理轉子組立精度與矽鋼片沖壓毛邊的問題,本研究利用IPM馬達轉子型態多變之優勢,進行內部障壁設計以全圓轉子型態改善組立精度與毛邊問題。此外透過建立IPM馬達之設計流程,逐步檢視馬達規格與各項材料的選用,並藉由調整不同轉子圓周修弧係數,對原型件轉子的幾何形狀進行優化,改善其反電動勢總諧波失真率,並降低IPM馬達使用釹鐵硼永久磁鐵所產生的頓轉轉矩,經由對反電動勢諧波與頓轉轉矩的改善,達到頓轉轉矩峰對峰值小於2N-m以及反電動勢總諧波失真率與轉矩漣波小於5%,使IPM馬達輸出轉矩的漣波下降,讓輸出轉矩穩定達到降低振動噪音的問題。除了探討永磁馬達的輸出轉矩特性外,本研究調整內部障壁參數並透過有限元素分析輔助設計,使其輸出轉矩性能符合應用場合標準,解決非全圓圓周轉子加工精度造成電氣性能的影響,以利簡化IPM馬達製程與整體性能提升。
Even though the induction motors (IM) has high market share, the high efficiency performance permanent magnet (PM) motor’s market demand is constantly increasing in recent years. In Taiwan PM motors have many important roles in Not only in the field of white goods, but also in various industries and electric vehicle power system. In addition, there is Not loss at the region of the rotor led to the PM motor is more efficiency than the conventional induction motors. In spite of the high power density saves the installed space that makes it utilized widely in many cases. On the other hand, the low inertia of the rotor in the response to the high acceleration performance of PM motor.
The PM motors in some earlier periods are predominantly based on the type of Surface mounted Permanent Magnet (SPM). After that, it comes out the Interior Permanent Magnet motor (IPM), in order to robust the stability of the structure. Aim to optimize the output of torque performance, the design methods of pole-arc coefficients was carried out this study. Due to the various types of IPM rotor, this study could easily satisfy the requirements for multiple applications through the design of Flux-barriers inside the rotor.
In this study, the design process is completed. Through the pole-arc coefficients and Flux-barrier method, the optimal IPM rotor was applied to achieve the goals of this study: cogging torque peak-to-peak value less than 2 N-m, torque ripple and lower total harmonic distortion (THD) of back electromotive force less than 5%.

摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 5
1.3 文獻回顧 7
1.4 論文架構 13
第二章 永磁馬達的數學模型 14
2.1 a-b-c軸數學模型 14
2.2 座標轉換 17
2.3 dq軸數學模型 18
第三章 永磁馬達設計流程 20
3.1 規格 22
3.2 馬達種類與型態選擇 22
3.3 材料選用 23
3.3.1 銅線的選用 24
3.3.2 矽鋼片的選用 26
3.3.3 磁鐵的選用 30
3.4 材料成本分析 35
第四章 永磁馬達轉子設計與分析 36
4.1 轉矩特性 36
4.1.1 反電動勢總諧波失真率 36
4.1.2 頓轉轉矩 37
4.1.3 轉矩漣波 39
4.1.4 最大轉矩控制 39
4.2 原型件-修弧設計 40
4.3 障壁設計 41
4.3.1. 周向障壁 41
4.3.2. 徑向障壁 42
4.4 有限元素分析流程 43
4.4.1. 材料特性設定 43
4.4.2. 電磁分析步驟 44
第五章 有限元素分析結果討論與驗證 46
5.1 原型件模型模擬結果 46
5.2 障壁設計模擬結果 50
5.2.1 周向障壁模擬結果 50
5.2.2 徑向障壁模擬結果 52
5.3 修弧與障壁設計模擬結果比較 55
5.3.1 輸出轉矩與轉矩漣波 57
5.3.2 反電動勢分析 58
5.3.3 頓轉轉矩 60
第六章 結論與未來研究方向 61
6.1 結論 61
6.2 未來研究建議 61
參考文獻 62

[1]石川憲二,電気自動車が一番わかる,技術評論社,2011年。
[2]Hanselman D. C., Brushless Permanent-Magnet Motor Design, Magna Physics,USA,2006
[3]東元電機,綠色產品新發展,http://tecocsr.teco.com.tw/page2。
[4]日精株式会社,產品型錄—IPM齒輪電機速度控制類型,2012年。
[5]江緻惟,永磁與磁阻馬達市場發展機會與挑戰,工研院產業經濟與趨勢研究中心,2015。
[6]張鈺炯,IPM馬達之應用介紹,電機月刊,第105期,pp. 157-165,民國87年。
[7]Keisuke Ogawa, 4WD Prius Drives Rear Wheels With Induction Motor for Fuel Economy, Nikkei Technology, Nov 24, 2015.
[8]中華人民共和國機械行業標準,JB/T4129沖壓件毛刺高度, 1999年6月24日。
[9]薛乃綺、侯貫智,開發不使用稀土材料的馬達日益重要,金屬工業研究發展中心,2011。
[10]鄭振東編譯,實用磁性材料,全華圖書股份有限公司,民國88年。
[11]宋后定,常用永磁材料的穩定性,磁性材料及器件,2008年2月。
[12]永磁無刷電動機系統通用技術條件,中華人民共和國國家標準,2008年1月22日。
[13]F. Yusivar, H. S. V. Roy, R. Gunawan and A. Halim, “Cogging torque reduction with pole slot combination and notch,” in proceedings of the 2014 International Electrical Engineering and Computer Science (ICEECS) Conference, Kuta, pp. 260-263, 2014.
[14]劉一平、許上明、濮紹文、金仁全,電動機繞組修理,上海科學技術出版社。
[15]Permanent Magnet Brushless Machines Technology, The University of Sheffield.
[16]S. Hwang and D. K. Lieu, “Design techniques for reduction of reluctance torque in brushless permanent magnet motors,” IEEE Transactions on Magnetics, Vol. 30, No. 6, pp. 4287-4289, Nov 1994.
[17]F. Chai, P. Liang, Y. Pei and S. Cheng, “Analytical Method for Iron Losses Reduction in Interior Permanent Magnet Synchronous Motor,” IEEE Transactions on Magnetics, Vol. 51, No. 11, pp. 1-4, Nov. 2015.
[18]Huangda Lin, D. Wang, Dezhi Liu, J. Chen, “Influence of Magnet Shape on Torque Behavior in Surface-Mounted Permanent Magnet Motors,” in proceedings of 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou China, Oct. 2014.
[19]G. H. Kang, Y. D. Son and G. T. Kim, “A Novel Cogging Torque Reduction Method for Interior Type Permanent Magnet Motor,” in proceedings of the 2007 Industry Applications Conference. 42nd IAS Annual Meeting, New Orleans, LA, pp. 119-125, 2007.
[20]H. S. Kim, Y. M. You and B. I. Kwon, “Rotor Shape Optimization of Interior Permanent Magnet BLDC Motor According to Magnetization Direction,” IEEE Transactions on Magnetics, Vol. 49, No. 5, pp. 2193-2196, May 2013.
[21]H. S. Chen, D. G. Dorrell and M. C. Tsai, “Design and Operation of Interior Permanent-Magnet Motors With Two Axial Segments and High Rotor Saliency,” IEEE Transactions on Magnetics, Vol. 46, No. 9, pp. 3664-3675, Sept. 2010.
[22]S. I. Kim, J. Y. Lee, Y. K. Kim, J. P. Hong, Y. Hur and Y. H. Jung, “Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method,” IEEE Transactions on Magnetics, Vol. 41, No. 5, pp. 1796-1799, May 2005.
[23]E. Carraro, N. Bianchi, S. Zhang and M. Koch, “Performance comparison of fractional slot concentrated winding spoke type synchronous motors with different slot-pole combinations,” in proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, pp. 6067-6074, 2015.
[24]Kiyoumarsi and M. Moallem, “Optimal Shape Design of Interior Permanent-Magnet Synchronous Motor,” in proceedings of the 2005 IEEE International Conference on Electric Machines and Drives San Antonio, TX, pp. 642-648, 2005.
[25]L. Fang, S. O. Kwon, T. Sun, J. P. Hong, “Optimal Shape Design of Double-barriers in Single-layer Interior PM Synchronous Motor For Reducing Torque Pulsation,” in proceedings of 17th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2010.
[26]陳運鴻,永久磁石充磁方式對永磁馬達轉矩特性之影響分析,國立成功大學電機工程學系碩士論文,民國一百零三年七月。
[27]D. Y. Ohm, “DYNAMIC MODEL OF PM SYNCHRONOUS MOTORS,” Drivetech, Viraginia, 2003.
[28]劉昌煥,交流電機控制,東華書局,民國97年7月。
[29]百目鬼英雄,SPM モータと IPM モータの特長について,電気製鋼,第79巻2號,2008 年 4 月。
[30]洪啟峯,永磁同步馬達設計,國立宜蘭大學機械與機電工程學系,民國一百零三年八月。
[31]黃瑮榕,同步馬達之設計與分析,國立宜蘭大學機械與機電工程學系,民國一百零四年六月。
[32]關暘、吳敏全,電動車用內置式永磁馬達之V型轉子磁鐵配置設計,機械工業雜誌,361期,民國102年3月號。
[33]Ghasaei and A. Vahedi, “Torque ripple reduction by multi-layering technique in an interior permanent magnet motor used in hybrid electric vehicle,” in proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, pp. 372-377, 2014.
[34]日本工業規格,JIS C 3053繞線通則,1988年。
[35]IEC, IEC 60085 Electrical insulation - Thermal evaluation and designation, 2007.
[36]杜耀鐘,淺談漆包線製程與產品及其應用,電機月刊第十一卷第十二期,2001年12月。
[37]許溢适,實用電動機設計手冊,強峰印刷企業有限公司,民國96年6月。
[38]JIS, JIS C 2552 Cold-rolled Non-oriented electrical steel strip and sheet delivered in the fully-processed state, 2014.
[39]中華民國國家標準,CNS 7215非方向性電磁鋼片及鋼帶,,經濟部標準檢驗局,民國99年11月修定。
[40]程福秀,電機設計與計算,五洲出版社,民國56年1月。
[41]凌群雅,馬達動力量測實驗室之設計與實現,國立宜蘭大學機械與機電工程學系,民國一百零五年三月。
[42]王以真,實用磁路設計,全華科技圖書股份有限公司,民國84年10月。
[43]Sintered Neodymium-Iron-Boron Magnets-N35SH, Arnold Magnetic Technologies Crop.
[44]G. H. Kang, Y. D. Son and G. T. Kim, “A Novel Cogging Torque Reduction Method for Interior Type Permanent Magnet Motor,” in proceedings of the 2007 Industry Applications Conference. 42nd IAS Annual Meeting, New Orleans, LA, pp. 119-125, 2007.
[45]M. Aydin, “Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization,” InTechOpen, Mar. 2012.
[46]S. Zhang, E. Carraro, N. Bianchi, K. Wang and K. Vervaeke, “Industrial-scale motor cogging torque control for a high-Volume motor manufacturing,” in proceedings of the 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d'Alene, ID, pp. 1235-1241, 2015.
[47]C. Studer, A. Keyhani, T. Sebastian and S. K. Murthy, “Study of cogging torque in permanent magnet machines,” in proceedings of the1997 IEEE Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS '97, New Orleans, LA, pp. 42-49 Vol.1, 1997.
[48]M. S. Islam, S. Mir, T. Sebastian and S. Underwood, “Design considerations of sinusoidally excited permanent-magnet Machines for low-torque-ripple applications,” IEEE Transactions on Industry Applications, Vol. 41, No. 4, pp. 955-962, July-Aug. 2005.
[49]L. Fang and J. P. Hong, “Flux-barrier design technique for improving torque performance of interior permanent magnet synchronous motor for driving compressor in HEV,” in proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, pp. 1486-1490, 2009.
[50]浩二 矢部、馬場和彦,永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置,世界知識產權組織專利,WO 2013061397 A1,2013。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top