跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林濬賢
研究生(外文):Jyun-sian Lin
論文名稱:管道可燃性氣體爆炸初期抑制之探討
論文名稱(外文):管道可燃性氣體爆炸初期抑制之探討
指導教授:陳政任陳政任引用關係
指導教授(外文):Jenq-renn Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:56
中文關鍵詞:丙烷爆炸過壓蒸氣雲爆炸高壓液化可燃性氣體火焰傳播
外文關鍵詞:high-pressure liquefied flammable gaspropaneflame propagationexplosion overpressurevapor cloud explosion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
2014年7月31日晚上,高雄前鎮區所發生舉國震驚的氣爆,罹難的32人中有7位第一線的消防人員,雖然本事故為人為疏失,但也凸顯了高壓液化可燃性氣體外洩應變的困難與盲點,如何在高壓液化可燃性氣體外洩發生時,研擬正確且有效的應變措施是當務之急,也是本研究的重點。
本研究是透過有系統、具再現性的排放條件控制,進行測試,將特定濃度的丙烷排放至管道中引燃,並搭以不同抑制條件,紀錄所造成的爆炸過壓數據、火焰傳播影像,進行探討,找出爆炸危害特性及條件,進一步提出能抑制可燃性氣體爆炸之方法。
分析火焰造成之壓力發現,壓力在到達含水抑制容器時,並沒有明顯下降之情況,且由影像數據中也觀察到,水並無明顯被揚起之情況,顯見水在本研究中並無產生抑制效果,而當抑制容器內灌入空氣或氮氣時,壓力在到達抑制容器時則有明顯降低之情形,推測可能為容器內空氣稀釋丙烷濃度及氮氣降低氧濃度造成,可是因氣體並無延展至整個管徑,所以無法抑制火焰點燃後段丙烷,使火焰造成之壓力在經過抑制容器後有回升之趨勢。
歸納以上結論得出,對於長管道的爆炸抑制,主要於抑制震波後方火焰,並非抑制前方的震波;而在高壓液化可燃性氣體爆炸初期,爆炸尚在爆燃階段,其產生之過壓較小,利用前方震波揚起抑制容器內的水產生水霧之方式在實際狀況下不可行,而利用惰性氣體裝置容器內之條件,雖無法完全抑制火焰傳播,但實驗結果顯示,火焰之升壓在到達抑制容器段則有明顯下降之趨勢,因此建議未來實驗可從利用惰性氣體抑制之方法上著手,並加以改進。
On July 31, 2014, a destructive vapor explosion occurred in Kaohsiung Qianzhen District resulting in 32 fatalities including 7 firefighters. Although the incident was caused by human errors, it also highlights the difficulties and unknowns in responding the leak from a high-pressure liquefied flammable gas. Thus, it is the focus of present study in finding the correct and effective response actions during a high-pressure liquefied flammable gas leak.
In this study, a systematic and reproducible release control system was built to conduct the release of specified concentration of propane into a conduit and then ignite. With different suppression methods, overpressure data and flame propagation were recorded and analyzed in order to identify the explosion characteristics and conditions such that suppression method of flammable gas explosions may be found.
From the analysis of the shock pressure which was caused by flame expansion, it is found that shock pressure was not suppressed and water in the container was not dispersed. This suggests that water in a container has no suppression effect for flame expansion shock. However, if the water was replaced by air or nitrogen in the container, the shock pressure was reduced upon it impacted the container, presumably caused by air dilution or nitrogen dilution. However, the dilution did not extend to the whole conduit and flame and overpressure picked up after the suppression container.
In summary, the focus of explosion suppression in a long conduit should be placed in the flame after the initial shock rather than the shock itself. In the early stage of explosion, the explosion is a deflagration with a small overpressure. Such a small overpressure is insufficient to disperse water from a container. For a container filled with inert gas, dilution readily disperse the flame and the overpressure although not completely owing to limited dilution gas. Thus, inert gas suppression was considered the most effective and plausible method for suppression the early stage explosions. Further work is still required to device a better method of inert gas suppression.
摘要....................................................i
ABSTRACT...............................................ii
致謝...................................................iv
目錄....................................................v
表目錄................................................vii
圖目錄...............................................viii
第一章 緒論............................................1
1.1 前言................................................1
1.2 研究目的.............................................1
第二章 文獻回顧.........................................2
2.1 蒸氣雲爆炸...........................................2
2.2 蒸氣雲爆炸事故案例....................................2
2.3 爆炸主動抑制之探討....................................3
2.4 利用爆炸之震波進行被動抑制之探討.......................4
2.5 爆炸過壓行為之探討....................................8
第三章 研究方法與設備...................................10
3.1 研究架構............................................10
3.2 研究方法............................................11
3.2.1 研究器材..........................................12
3.3 研究系統............................................13
3.3.1丙烷排放控制系統....................................13
3.3.2 過壓量測系統......................................15
3.3.3火焰影像擷取系統....................................17
3.4 實驗流程............................................17
3.4.1 實驗步驟..........................................17
3.4.2 後續作業..........................................18
第四章 結果與討論.......................................19
4.1 丙烷濃度與震波探討...................................19
4.2 過壓行為之探討......................................20
4.3 抑制容器與震波之探討.................................28
4.4 抑制容器與火焰造成之壓力探討..........................29
4.5 爆炸抑制容器效果之探討...............................32
4.6 容器放置與否與火焰速度探討............................35
4.7火焰速度與火焰造成之壓力探討...........................39
第五章 結論............................................40
參考文獻................................................43
1.Crowl, D. A., J. L. Louvar, Chemical Process Safety, 2nd. Ed., Prentice-Hall, 2003.
2.Lees, F. P., Loss Prevention in the Process Industries, 2nd ed., Butterworth, 1996.
3.Mawhinney J. R. and R. Darwin, Protecting Against Vapor Explosions with Water Mist, Halon Option Technical Working Conference, 2-4 May 2000.
4.Jones, A, and Thomas, G.O., The Action of Water Sprays on Fires and Explosions, Process Safety and Environment Protection, 71B, 41-49 (1993).
5.Thomas, G.O., On the conditions required for explosion mitigation by water sprays, Process Safety and Environment Protection, 78B, 339-354 (2000).
6.Catlin C., Passive explosion suppression by blast-induced atomisation from water containers, Journal of Hazardous Materials, 94, 103–132 (2002).
7.Catlin C. A., B. C. R. Ewan, Explosion suppression system, US Patent, US 7228916 B2, 2007.
8.Ewan, B. C. R., M. Moatamedi, , The study of induced water flow devices in the suppression of gas explosions. Process Safety and Environmental Protection, 80, 126–134 (2002).
9.Ye, J., Chen, Z., Fan, B., Xie, B., Suppression of methane explosions in a field scale pipe. Journal of Loss Prevention in the Process Industries, 18, 89–95 (2005).
10.喻健良, 周崇, 劉潤傑, & 嚴清華. (2004). 可燃氣體爆炸火焰和壓力波傳播特性的實驗研究. 天然氣工業, 24(4), 87-90.
11.Cheng H.L., Experimental study on the explosion characteristic of combustible gas in pipelines, Journal of Safety Science and Technology, Vol.6 No.4, 2010.
12.ZHU C.J., Coupled Relationship Between Gas Velocity and Peak Overpressure of Deflagration Wave in Confined Space, Journal of Combustion Science and Technology, Vol.18 No.4, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top