跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俞蓁
研究生(外文):Yu-Jhen Lin
論文名稱:非侷限空間矽甲烷蒸氣雲爆炸之研究
論文名稱(外文):非侷限空間矽甲烷蒸氣雲爆炸之研究
指導教授:陳政任陳政任引用關係
指導教授(外文):Jenq-Renn Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:火焰傳播爆炸過壓非侷限空間蒸氣雲爆炸矽甲烷爆炸模式
外文關鍵詞:flameunconfined vapor cloud explosionssilane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本研究聚焦於非侷限空間中矽甲烷外洩之爆炸特性,以及找出適用於矽甲烷的爆炸過壓模式。本研究採用塑膠棚法之概念侷限外洩之矽甲烷,但不影響爆炸之過壓,以利爆炸之分析。先將邊長0.4公尺的不鏽鋼立方框以聚氯乙烯膜緊密包覆,再由真空泵抽出與測試矽甲烷體積相等之空氣後,利用矽甲烷高速外洩不會引燃的特性,把矽甲烷排放入塑膠棚內與空氣混和,待矽甲烷達到測試所需濃度,利用氣動閥切斷矽甲烷流量而延遲引燃爆炸;並且利用每秒200,000點之頻率量測爆炸過壓。而火焰傳播之過程是藉由彩色高速攝影機以每秒10,000張之速度拍攝。
結果發現,爆炸過壓與火焰傳播速度皆有顯著之濃度效應,矽甲烷會在特定濃度(13~16 %)區間內,產生較大的爆炸過壓與火焰速度,於0.5m處最大過壓可達200 kPa以上;而在此濃度範圍以下或以上,0.5m處最大過壓皆不超過80 kPa,其中15.59 % 之測試,量測到355.93 kPa之過壓,是為此次測試過壓之最大值。而應用Dorofeev(1996)之過壓預測模式,在13 ~ 16 %濃度區間內可套用其爆轟模式,其餘濃度可套用爆燃模式,兩個模式預測結果都與本研究的量測結果相近。此研究結將有助於了解矽甲烷延遲引燃之爆炸危害特性與條件,降低產業運作矽甲烷之風險及強化矽甲烷外洩之緊急應變程序。
This study focuses on the explosion characteristics and applicable overpressure models for unconfined silane release. In this study, a plastic tent was used to confine the silane without affecting the explosion overpressure. First of all, a cubic frame with width of 0.4 m was wrapped by polyvinyl chloride film. Air which was in the tent and equal to volume of silane was withdrawn by a vacuum pump. Then silane was released into the center of plastic tent to mix with air utilizing the fact that silane release at high velocity will have delayed ignition to prevent ignition. Upon reaching the desired concentration, ignition was actuated by shutting off silane flow. Overpressure was measured at a rate of 200,000 Hz while the flame propagation was recorded by a high-speed camera with a rate of 10,000 frame/sec.
Results showed that explosion overpressure and flame propagation were strongly affected by silane concentration. Within a certain concentration range (13 %~16 %), silane explosion will generate higher overpressure and faster flame with peak overpressure higher than 200 kPa at 0.5 m from release center. Below or above this concentration range, the measured peak overpressures at 0.5 m were all below 80 kPa. In particular, the test with silane concentration of 15.59 % recorded a peak overpressure of 355.93 kPa, the highest among all tests. The explosion models of Dorofeev (1996) were used to estimate the maximum overpressure. The detonation model applies quite well for the tests with silane concentration range 13 %~16 %, while the deflagration model applies quite well to the rest tests. The current results will be useful for better understanding of the explosion characteristics and conditions, reducing the hazards of handling silane, and provide the basis for a better emergency response planning for accidental silane release.
摘要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1研究動機 1
1.2研究目的 5
1.3論文架構 6
第二章 文獻回顧 7
2.1危險特性 7
2.2引燃機制 10
2.3爆炸特性 14
2.4 蒸氣雲爆炸之測試方法 17
第三章 實驗方法與設備 22
3.1實驗方法 22
3.2量測記錄系統 25
3.2.1排放控制系統 26
3.2.2過壓擷取與火焰影像擷取系統 29
3.3前置作業 30
3.4實驗流程 31
第四章 結果與討論 38
4.1實驗參數計算 40
4.2火焰傳播之探討 43
4.2.1火焰影像 43
4.2.2火焰半徑 45
4.2.3火焰傳播速度 48
4.3爆炸過壓之探討 57
4.4爆炸過壓預測 61
第五章 結論 66
參考文獻 68
附錄 71
1.Mastorakos, E., Baritaud, T. A., & Poinsot, T. J. (1997). Numerical simulations of autoignition in turbulent mixing flows. Combustion and Flame, 109(1), 198-223.
2.曹常成,謝明宏,2015,矽甲烷槽車供應系統安全性研究,勞動部勞動及職業安全衛生研究所發行
3.Chen, J. R. , Tsai, H. Y., Chen, S. K., Pan, H. R., Hu, S. C., Shen, C. C., Kuan, C. M., Lee, Y. C., & Wu, C. C. (2006). Analysis of a silane explosion in a photovoltaic fabrication plant. Process Safety Progress, 25: 237-244.
4.Chang, Y. Y., Peng, D. J., Wu, H. C., Tsaur, C. C., Shen, C. C., Tsai, H. Y., & Chen, J. R. (2007). Revisiting of a silane explosion in a photovoltaic fabrication plant. Process Safety Progress, 26: 155-157.
5.蔡曉雲,2010,矽甲烷引燃與爆炸機制之研究,國立高雄第一科技大學,博士論文。
6.Koda, S. (1992). Kinetic aspects of oxidation and combustion of silane and related compounds. Progress in energy and combustion science, 18(6), 513-528.
7.Britton, L. G. (1990). Combustion hazards of silane and its chlorides.Plant/Operations Progress, 9(1), 16-38.
8.Ngai, E.Y., Huang, K.P.P., Chen, J.R., Shen, C.C., Tsai, H.Y., Chen, S.K., Hu, S.C., Yeh, P.H., Liu, C.D., Chang, Y.Y., Peng, D.J., & Wu, H.C. (2007). Field tests of release, ignition and explosion from silane cylinder valves. Process Safety Progress, 26: 265-282.
9.Tsai, H.Y., Wang, S.W., Wu, S.Y., Chen, J.R., Ngai, E.Y. & Huang, K.P.P. (2010). Experimental studies on the ignition behavior of pure silane released into air. Journal of Loss Prevention in the Process Industries, 23: 170-177.
10.梁瑞霖,2010,溫度與溼氣對矽甲烷自燃機制影響之研究,國立高雄第一科技大學,碩士論文。
11.洪惠玲,2011,水氣對矽甲烷自燃機制之研究,國立高雄第一科技大學,碩士論文。
12.Cruice, W. J. (1982). Leakage of silane in gas cabinets and ducts. Hazards Research Corporation, Report, 5038.
13.Ngai, E. Y., Fuhrhop, R., Chen, J. R., Chao, J., Bauwens, C. R., Mjelde, C., ... & Wilson, B. (2015). CGA G-13 large-scale silane release test–Part II. Unconfined silane–air explosions. Journal of Loss Prevention in the Process Industries, 36, 488-496.
14.Dorofeev, S. B. (1995, July). Blast effects of confined and unconfined explosions. In Proceedings of the 20th International Symposium on Shock Waves (pp. 77-86).
15.王建祥,2015,矽甲烷爆炸火焰之成長與過壓之研究,國立高雄第一科技大學,碩士論文。
16.Crowl, D. A., & Louvar, J. F. (2001). Chemical process safety: fundamentals with applications. Pearson Education.
17.Leyer, J. C., Guerraud, C., & Manson, N. (1975, January). Flame propagation in small spheres of unconfined and slightly confined flammable mixtures. InSymposium (International) on Combustion (Vol. 15, No. 1, pp. 645-653). Elsevier.
18.Kim, W.K., Mogi, T. & Dobashi, R. (2013). Fundamental study on accidental explosion behavior of hydrogen-air mixtures in an open space, International Journal of Hydrogen Energy, 38: 8024-8029.
19.Otsuka, T., Saitoh, H., Mizutani, T., Morimoto, K. & Yoshikawa, N. (2007). Hazard evaluation of hydrogen–air deflagration with flame propagation velocity measurement by image velocimetry using brightness subtraction, Journal of Loss Prevention in the Process Industries, 20: 427–432.
20.Dorofeev, S. B., Sidorov, V. P., Kuznetsov, M. S., Dvoinishnikov, A. E., Alekseev, V. I., & Efimenko, A. A. (1996). Air blast and heat radiation from fuel-rich mixture detonations. Shock Waves, 6(1), 21-28.
21.Kim, W. K., Mogi, T., & Dobashi, R. (2013). Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography. Journal of Loss Prevention in the Process Industries, 26(6), 1501-1505.
22.Kim, W.K., Mogi, T., Kuwana, K. & Dobashi, R. (2015). Prediction model for self-similar propagation and blast wave generation of premixed flames, International Journal of Hydrogen Energy, 40: 11087-11092.
23.Koda, S. (1992). Kinetic aspects of oxidation and combustion of silane and related compounds. Progress in energy and combustion science, 18(6), 513-528.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top