(3.231.166.56) 您好!臺灣時間:2021/03/08 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賈恩蒂
研究生(外文):Ndiaye-Ndey Mariam
論文名稱:多孔瀝青道路之溫度變化與水分滲透性變化之案例研究
論文名稱(外文):A Case Study on the Variation of Thermal Behavior and Permeability in Porous Asphalt Concrete Pavement
指導教授:王裕民博士
指導教授(外文):Wang Yu-Min
口試委員:鍾文貴王弘祐郭勝豐
口試委員(外文):Chung Wen-Guey,,Wang Hung-YuKou Sheng- Feng
口試日期:July 11th 2017
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土壤與水工程國際碩士學位學程
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:104
語文別:英文
論文頁數:114
中文關鍵詞:透水鋪面熱傳導行為溫度分佈監測項目應力應變動力學
外文關鍵詞:Permeable PavementThermal BehaviorTemperature DistributionMoisture ContentStress and Strain Dynamic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
透水鋪面提供了解決都市降雨逕流的方法,且透水鋪面的熱傳導行為研究結果亦顯示,不論酷暑及嚴冬,透水鋪面可有效地降低都市熱島效應。本文之主要目的為探討在多變化的氣候條件下,多孔隙瀝青鋪面的熱傳導行為及其透水性,並同時監測分析鋪面底層的溫度分佈和含水量。
本研究對三種新的瀝青混凝土鋪面結構進行了七個試驗段的一系列試驗,其中第四試驗段為全透水鋪面;第三及第五試驗段為半透水鋪面;第二、第六以及第七試驗段則為傳統瀝青鋪面。為了觀測地表溫度、含水量、鋪面應力、應變以及土壤之壓力,將地面溫度計、時域水份計(TDR)、H型應變儀、Z向應變計和土壤壓力計等分別埋入鋪面之下。並採用了太陽能反照率試驗儀搭配CR850資料紀錄器進行太陽能反射率測試,作為評估與比較傳統鋪面和透水鋪面的太陽光吸收率和反射率。試驗結果顯示,第三試驗段之淨輻射量高於其他透水試驗段(第四和第五試驗段);在傳統鋪面中,第二試驗段之淨輻射量則高於第六以及第七試驗段。
另外也分別於2015年8月以及11月進行了實測之車輛動態應力-應變試驗,結果顯示,11月份之應力及應變觀測成果皆高於8月份之觀測成果,而11月份之土壤壓力觀測成果低於8月份之觀測成果;此外,水分記錄資料亦顯示第四試驗段之總含水量高於第二、第三和第五試驗段。而在溫度記錄觀測中亦發現,從面層傳遞到面層下的熱能漸減,日間表層鋪面溫度以第四試區為所有試區中最高,在夜間之溫度則為全試驗段之最低。綜合本研究的試驗成果顯示,採用全透水鋪面的總導熱係數及路面水份滲透能力皆優於傳統鋪面及半滲透鋪面。
Permeable concrete pavements offer solutions for rain water runoff treatment in urban areas, and thermal behavior investigations have proved their contributions to reducing the urban island heat effect in the hottest and coldest seasons due to their cooling capacity. Thus, the main aim of this study is to investigate the thermal behavior and moisture permeability of porous asphalt concrete pavement under specific weather conditions while paying attention to the temperature distribution and the moisture content in the sub base. A series of tests were carried out on a newly implemented asphalt concrete pavement structure with three different designs; permeable, semi-permeable and traditional pavement sections. Section IV is the fully permeable section, sections III and V the semi-permeable sections and sections II, VI and VII are the traditional pavement sections. A ground thermometer, a time domain reflectometry (TDR), an H-Type strain gauge, a Z strain gauge and earth pressure cells were embedded into the pavement sections and used to observe the ground temperature, moisture content, pavement’s stress and strain and soil pressure. A solar reflectivity efficiency test was also carried out using a CR850Logger with reflective sensor to evaluate and compare the effectiveness of solar energy absorption and reflectivity of both traditional and permeable pavements in this study.
From the data analysis, tests carried out for the solar energy absorption showed that the net radiation in the pavement of section three was higher than that of the other permeable sections (sections four and five), whiles section two’s net radiation was higher than sections six and seven for the traditional pavement sections.
The vehicle dynamic stress and strain tests carried out in August and November 2015 showed that; overall, the stress values in November were higher than that in August for most of the sections. The strain values in November were also much higher than in August. The earth pressure values were lower in August than in November as well. The overall water content in section four after evaluation was determined to be higher than that in sections two, three and five.
It was also observed that section four exhibited the highest daytime surface temperatures of all the sections because of the reduced thermal energy transfer from the surface to subsurface layers. In comparison, it also had the lowest nighttime temperatures when compared with the other sections’. Therefore, from these results and evaluations, it was determined that the overall thermal conductivity and permeable capacity of the fully permeable section was better than that of the traditional sections and semi-permeable sections.
TABLE OF CONTENTS

摘要 I
ABSTRACT III
ACKNOWLEDGMENTS V
TABLE OF CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XIII
Acronyms and Abbreviations XV
Chapter 1 Introduction 1
1.1 Statement of the Problem 1
1.2 Research Findings 2
1.3 Objectives 2
1.4 Purpose of the study 5
1.5 Thesis Contents 6
Chapter 2 Literature Review 7
2.1 Types of Pavements 7
2.1.1 Flexible Pavements 7
2.1.2 HMA Pavement 8
2.1.3 Rigid Pavements 11
2.2 Asphalt concrete pavements (Flexible Pavements) 13
2.2.1 Benefits of Asphalt concrete pavements 14
2.2.2 Asphalt as a sustainable pavement construction material 15
2.3 Types of Asphalt Pavements 16
2.3.1 Perpetual Pavements 16
2.3.2 Thin Overlays 17
2.3.3 WMA (Warm-Mix Asphalt) Pavements 18
2.3.4 Porous Asphalt Pavements (Permeable Pavements) 20
2.4 Definition of Mixtures 26
2.5 Thermal Properties of Pavement Materials 27
2.6 Heat balance at the pavement surface 30
2.6.1 Heat Conduction 31
2.6.2 Heat Convection 31
2.6.3 Heat Radiation 32
2.6.4 Solar radiation 33
2.6.5 Thermal radiation 33
2.7 Sensitivity analysis of asphalt temperature 34
2.7.1 Thermal Conductivity 35
2.7.2 Specific Heat. 35
2.7.3 Pavement Albedo. 35
2.7.4 Emissivity/absorptivity. 36
2.8 Permeability of Asphalt Pavements 37
2.8.1 Definition of Permeability 37
2.8.2 Falling-Head Test 38
2.8.3 Constant-Head Test 38
2.9 Moisture evaporation in porous asphalt pavements 42
2.10 Stress-Strain Dynamic in Asphalt Pavements 45
2.11 Porous Pavement temperature and Moisture Modeling Studies 50
2.12 Possible methods to slow down the heat island effect 51
Chapter 3 Materials and Methods 53
3.1 The Study Area 53
3.2 Vehicle Dynamic Stress-Strain Analysis 60
3.3 Solar Radiation Reflectivity Efficiency 62
3.4 Monitoring and Evaluation of Pavement Surface Temperature 64
3.5 Permeability and Moisture content 65
Chapter 4 Result and Discussion 66
4.1 Vehicle dynamic stress-strain monitoring test data 66
4.1.1 Comparison of the vehicle dynamic stress-strain tests data 72
4.1.2 Differences between vehicle dynamic stress-strain data of the sections 74
4.2 Solar Radiation Reflectivity Efficiency Data 74
4.3 Temperature variations in sections II to V of the study area 78
4.3.1 The surface temperature observation Results 79
4.3.2 Surface temperature variations by section 83
4.3.3. Comparison of surface temperatures of sections II and III 84
4.3.3 Comparison of surface temperatures of sections II and IV 86
4.3.4 Comparison of surface temperatures of sections II and V 88
4.4 Permeability and moisture content data 90
4.4.1 The permeable section most suitable for load bearing capacity. 92
4.4.2 Comparison of temperature and moisture content for Sections III, IV and V 92
4.5 Coefficient of determination 93
Chapter 5 Summary 97
Chapter 6 Conclusion 99
References 101
Bio-Sketch of Author 114
Abdullah W., M. Obaidat, M. Nazem, 1998. Influence of aggregate type and gradation on voids of asphalt concrete pavements. Journal of Materials in Civil Engineering 2(76):76–85.
Ahmed M.U., A. Rahman, M.R. Islam, R.A. Tarefder, 2015. Combined effect of asphalt concrete cross-anisotropy and temperature variation on pavement stress–strain under dynamic loading. Construction and Building Materials 93:685–694.
Akbari H., 2005. Energy saving potentials and air quality benefits of urban heat island mitigation, in: EPA (Ed.), EPA. Retrieved on March 19, 2017, from the World Wide Web: (http://www.epa.gov/hiri/impacts/index.htm.
Ameri-Gaznon M., 1989. Permanent deformation potential in asphalt concrete overlays over Portland cement concrete pavements. PhD thesis. Texas A&M University, College Station, TX.
Arabani M., S. M. Mirabdolazimi, A. R. Sasani, 2010.The Effect of Waste Tire Thread mesh on the dynamic behaviour of asphalt mixtures, Construction and Building Materials 24(6):1060-1068.
Asaeda T. Ca, V. T., 2000. Characteristics of Permeable Pavement During Hot Summer Weather and Impact on the Thermal Environment. Building and Environment 35:363-375.
Barnes K., J. Morgan, M. Roberge, 2001. Impervious Surfaces and the Quality of Natural and Built Environment. Department of Geography and Environmental Planning, Towson University, Baltimore, Maryland.
Barrett M.E., C.B.Shaw, 2007. Benefits of porous asphalt overlay on storm warter quality. In Highway Facility Design. 2025 ed., 127-134.
Belshe M., K. Kaloush, J. Golden and M. Mamlouk, 2008. The Urban Heat Island Effect and Impact of Asphalt Rubber Friction Course Overlays on Portland Cement Concrete Pavements in the Phoenix Area. In ASCE Conference, GeoCongress2008: Geosustainability and GeoHazard Mitigation (GSP 178):310-29.
Bernier Alexander, Adam Zofka, Iliya Yut, 2012. Laboratory evaluation of rutting susceptibility of polymer-modified asphalt mixtures containing recycled pavements. Construction and Building Materials 31:58-66.
Bhasin A., S. Caro, E. Masad, 2008. Moisture susceptibility of asphalt mixtures, Part 1. Mechanisms. International Journal of Pavement Eng. 9(2):81–98.
Bobes Vanesa-Jesus, Pablo Pascual-Muñoz, Daniel Castro-Fresno, Jorge Rodriguez-Hernandez, 2013. Asphalt solar collectors: A literature review. Applied Energy 102:962–970.
Bryant, E. Susan, Minkoff, C. Mike Stoneb, Steve, Coupled fluid flow and geomechanical deformation modeling. J Petrol Sci Eng 2003;38(1-2):3837–56.
Cahill T., M. Adams, C. Marm, 2005. Stormwater Management with Porous Pavements. Government Engineering 14-19.
Caro S., E. Masad, A. Bhasin, D. N. Little, 2008. Moisture susceptibility of asphalt mixtures, Part 1: Mechanisms. Int. Jour. of Pav. Eng. 9(2), 81–98.
Çengel Y., 2003. Heat transfer. A practical approach, 2nd Ed., McGraw-Hill, New York, 83:368–375 and 578.
Corlew J.S., and P.F. Dickson, 1968. Methods for Calculating Temperature Profiles of Hot-Mix Asphalt Concrete as Related to the Construction of Asphalt Pavements, In Asphalt Paving Technology. Association of Asphalt Paving Technologists Technical Sessions 37:101-140.
Cree D., M. Green, A. Noumowe, 2013. Residual strength of concrete containing recycled materials after exposure to fire: A review. Constr. and Building Materials 44:208–223.
Dawley C., B. Hogewiede, K.O. Anderson, 1990. Mitigation of instability rutting of asphalt concrete pavements in Lethbridge, Alberta, Canada. J Assoc. of Asphalt Paving Technologists 59:481–508.
Díaz del Coz J.J., P.J. García Nieto, J. Domínguez Hernández, A. Suarez Sanchez, 2009. Thermal design optimization of lightweight concrete blocks for internal one-way spanning slabs floors by FEM. Energy and Buildings 41(12):1276-1287.
European Asphalt Pavement Association, 2015. Information on Asphalt Pavements. Retrieved on April 7, 2017, from the World Wide Web: http://www.eapa.org/asphalt.php?c=78.
Fwa T.F., S.A. Tan, L.Y. Zhu, 2001. Reexamining C-u concept for asphalt paving mix design. Journal. of Transp. Eng. 127:67–73.
Garcia A., A. Hassn, A. Chiarelli, A. Dawson, 2015. Multivariable analysis of potential evaporation from moist asphalt mixture, Construction and Building Materials 98:80–88
Gartland L., 2008. Heat islands: understanding and mitigating heat in urban areas. London Earthscan Press in UK and USA.
Getautis E., H. Sivilevičius, 2009. Lietuvos valstybinės reikšmės kelių asfalto dangos provėžų gylio statistinis tyrimas ir vertinimas, Mokslas Lietuvos ateitis - Science-Future of Lithuania, Transport Engineering 1(6).
Ghafoori N., S. Dutta, 1995. Laboratory investigation of compacted no-fines concrete for paving materials, Journal of Mat. in Civil Eng. 7(3):183–191.
Ghassan R. Chehab, Y. Richard, M. Kim, 2005. Viscoelastoplastic continuum damage model application to thermal cracking of asphalt concrete, Journal of Materials in Civil Engineering 17 (4):384-392.
Golden J.S., 2004. The Built Environment Induced Urban Heat Island Effect in Rapidly Urbanizing Arid Regions - A Sustainable Urban Engineering Complexity. Environmental Sciences 1(4):321-349.
Griend A.A.V.d., 1994. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions, Water Resour. Res. 30 (2):181–188.
Gui J., P.E. Phelan, K.E. Kaloush, J.S. Golden, 2007. Impact of pavement thermophysical properties on surface temperatures. Journal of Materials in Civil Engineering 19(8): 683-690.
Guide for Design of Pavement Structures, 1993. AASHTO, Washington, DC.
Haghighi E., E. Shahraeeni, P. Lehmann, D. Or, 2013. Evaporation rates across a convective air boundary layer are dominated by diffusion. Water Resources 49:1602–1610.
Hall MR, P.K. Dehdezi, A.R. Dawson, J. Grenfell, R. Isola, 2012. Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. Journal of Materials in Civil Eng. 24(1):32–47.
Han R., X. Jin, C.J. Glover, 2011. Modeling pavement temperature for use in binder oxidation models and pavement performance prediction. Journal of Mater. In Civil Eng. 23(4):351–9.
Harvey J.T., H. Li, T.J. Holland, M. Kayhanian, 2013. Corrigendum: the use of reflective and permeable pavements as a potential practice for heat island mitigation and storm water management. Environ. Resources 8:1–14.
Haselbach L., M. Boyer, J. Kevern, V. Schaefer, 2011. Cyclic Heat Impacts in Traditional versus Pervious Concrete Pavement Systems. Proceedings of the 90th Annual Meeting of the Transportation Research Board, Transportation Research Board of the National Academies, Washington DC.
Haselbach L.M., S. Valavala, F. Montes, 2005. Permeability predictions for sandclogged Portland cement pervious concrete pavement systems, Journal of Environmental Management 81:42–49.
Haselbach, Liv., 2009. Pervious concrete and mitigation of the urban heat island effect. Transportation Research Board 88th annual meeting, 2009-1-11 to 2009-1-15.
Hermansson A., 2004. Mathematical model for paved surface summer and winter temperature: comparison of calculates and measured temperatures. Cold Regions Science and Technology 40:1-17.
Hermansson A., R. Charlier, F. Collin, S. Erlingsson, L. Laloui, M. Sršen, 2009. Heat transfer in soils. Water in road structures. Dawson, A.R. (ed.). Nottingham Transportation Engineering Centre, University of Nottingham, U.K 69-79.
Hofstra A, A. Klomp, 1972. Permanent deformation of flexible pavements under simulated road traffic conditions. In 3rd international conference on the structural design of Asphalt Pavements, London 1613–621.
Huang X. M., Y. Q. Zhang, 2010. A new creep test method for asphalt mixtures. Road Materials and Pavement 11(4):969-991.
Incropera F., D. DeWitt, 1996. Fundamentals of Heat and Mass Transfer, 4th edition. John Wiley & Sons, Inc., New York.
Iordanau G., 2009. Flat-plate solar collectors for water heating with improved heat transfer for application in climatic conditions of the mediterranean region. Doctoral thesis, Durham University. Retrieved on April 20, 2017, from the World Wide Web: Durham E-Theses Online: <http://etheses.dur.ac.uk/174>.
JFE Steel Corporation, 2006. Experimental Data of Performance Test of Water-Holding Block.
Ji Xiaoping, Nanxiang Zheng, Yueqin Hou, Sisheng Niu, 2013. Application of asphalt mixture shear strength to evaluate pavement rutting with accelerated loading facility (ALF). Construction and Building Materials 41:1–8.
Kanitpong K., C.H. Benson, H.U. Bahia, 2001. Hydraulic conductivity (permeability) of laboratory compacted asphalt mixtures. In: Proceedings, 80th Annual Meeting of the Transportation Research Board, Washington DC 1767:25–32.
Karasawa K, N. Toriiminami, Ezumi K. Kamaya, 2006. Evaluation of performance of water-retentive concrete block pavements. In: 8th International conference on concrete block paving.
Kevern J.T., V.R. Schaefer, K.Wang, 2009. Temperature behavior of pervious concrete system. Transportation Research Record 2098:94-101.
Kolokotroni M., X. Ren, M. Davies, A. Mavrigianni, 2011. London’s urban heat island: impact on current and future energy consumption in office buildings. Energy and Buildings 47:302–311.
Lehmann P., S. Assouline, D. Or, 2008. Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E. 77 056309.
Lei Y., H. Wang, 2017. Effects of vehicle speeds on the hydrodynamic pressure of pavement surface: Measurement with a designed device. Measurement 98:1–9.
Li H., 2014. Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials. Construction and Building Materials 65:367–375.
Li H., M. Kayhanian, J.T. Harvey, 2013. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods. Journal of Environ. Management 118:144–152.
Lim E., K.H. Twan, T.F. Fwa, 2013. Effect of mix proportion on strength and permeability of pervious concrete for use in pavement. Proceedings of the Eastern Asia Society for Transportation Studies, vol. 9.
Luck J.D., S.R. Workman, M.S. Coyne, S.F. Higgins, 2008. Solid material retention and nutrient reduction properties of pervious concrete mixtures. Biosystems. Engineering 100:401–408.
McCain G.N., M.M. Dewoolkar, 2009. Strength and permeability characteristics of porous concrete pavements. Transportattion Research Board 1–13.
Miró Rodrigo, Gonzalo Valdés, Adriana Martínez, Pilar Segura, Celestino Rodríguez, 2011. Evaluation of high modulus mixture behaviour with high reclaimed asphalt pavement (RAP) percentages for sustainable road construction. Construction and Building Materials 25(10):3854–62.
Moghaddam T. B., M. R. Karim, M. Abdelaziz, 2011. A review on fatigue and rutting performance of asphalt mixes. Scientific Research and Essays 6(4):670-682.
Montes F., S. Valavala, L.M. Haselbach, 2005. A new test method for porosity measurements of portland cement pervious concrete, J. ASTM Int. 2(1):1–13.
Motiejūnas A., M. Palukaitė, A. Vaitkus, D. Čygas, A. Laurinavičius, 2010. Research of the Dependence of Asphalt Pavement Stiffness Upon the Temperature of Pavement Layers. The Baltic Journal of Road and Bridge Engineering 5(1):50-54.
Murali J. Krishnan, K.R. Rajagopal, 2004. Triaxial testing and stress relaxation of asphalt concrete. Mechanics of Materials 36:849-864.
Nakayama T., T. Fujita, 2010. Cooling Effect of Water-holding Pavements Made of New Materials on Water and Heat Budgets in Urban Areas, Landscape and Urban Planning 96:57–67.
National Asphalt Pavement Association, 2017. Information on Asphalt Pavements. Retrieved on April 7, 2017, from the World Wide Web: http://www.asphaltpavement.org/index.php?option=com_content&view=article&id=359&Itemid=863.
Nguyen D.H., N. Sebaibi, M. Boutouil, L. Leleyter, F. Baurd, 2014. A modified method for the design of pervious concrete mix. Constr. and Building Materials 73:271– 282.
Novak M, B. Birgisson, R. Roque, 2003. Tire contact stresses and their effects on instability rutting of asphalt mixture pavements – Three-dimensional finite element analysis. Pavement Manage Rigid Flex Pavement DES: Pavement Des Management Performance 1853:150–6.
Oke T.R., 1987. Boundary Layer Climate, 2nd edition, Routledge, London.
Ozer H., I. L. Al-Qadi, H. Wang, , Z. Leng, 2011. Characterisation of interface bonding between hot-mix asphalt overlay and concrete pavements: modelling and in-situ response to accelerated loading. International Journal of Pavement Engineering 13(2):181-196.
Pavement Interactive: Pavia Systems, Inc., 2012. Information on Flexible HMA Pavements . Retrieved on April 7 2017, from the World Wide Web: http://www.pavementinteractive.org/hma-pavement.
Perini K., M. Ottelé, E.M.H.A.L.A. Fraaij, R. Raiteri, 2011. Vertical greening systems and the effect on air flow and temperature on the building envelope. Building Environment 46(11):2287–2294.
Pratt C.J., (1999). Use of permeable, reservoir pavement constructions for stormwater treatment and storage for re-use. Water Science and Technology 39(5):145-151.
Qin Y., 2016. Pavement surface maximum temperature increases linearly with solar absorption and reciprocal thermal inertial. International Journal of Heat and Mass Transfer 97:391–399.
Qin Y., J.E. Hiller, 2016. Water availability near the surface dominates the evaporation of pervious concrete. Construction and Building Materials 111:77–84.
Rosenfeld A.H., H. Akbari, S. Bretz, B.L. Fishman, D.M. Kurn, D. Sailor, H. Taha, 1995. Mitigation of Urban Heat Islands: Materials, Utility Programs, Updates. Energy and Buildings 22:255 –265.
Santamouris M., 2013. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy 26:224–240.
Sha Q. 2001. Premature damage phenomena and preventive techniques in expressway asphalt pavement. Beijing: People’s Communication Press; [in Chinese].
She H.Y., E.B. Sleep, 1998. The effect of temperature on capillary pressure–saturation relationships for air–water and perchloroethylene-water systems. Water Resources 34:2587–2597.
Shen J., F. Li, J. Chen, 2004. Analysis and preventive techniques of premature damage of asphalt pavement in expressway. Beijing: People’s Communication Press; [in Chinese].
Shokri N., P. Lehmann, D. Or, 2009. Characteristics of evaporation from partially wettable porous media, Water Resources 45(W02415). Retrieved on May 15 2017, from the World Wide Web: http://dx.doi.org/10.1029/2008WR007185
Somayaji S., 2001. Civil Engineering Materials. Prentice Hall, New Jersey.
Souza Flavio V., Leandro S Castro, 2012. Effect of temperature on the mechanical response of thermo-viscoelastic asphalt pavements. Construction and Building Mater. 30(9):574–82.
Stempihar, Pourshams-Manzouri, Kaloush, Rodezno, 2012. Porous Asphalt Pavement Temperature Effects on Overall Urban Heat Island. In: 2012 Annual Meeting of the Transportation Research Board.
Sun Li-jun, 2005. Structural Behavior Theory of Asphalt Pavements. Beijing: China Communications Press.
Suo Z., W.G. Wong, 2009. Nonlinear properties analysis on rutting behaviour of bituminous materials with different air void contents. Construction and Building Materials 23(12):3492-3498.
Synnefa A., M. Santamouris, I. Livada, 2006. A study of the thermal performance of reflective coatings for the urban environment. Solar Energy 80(8):968–81.
Takahashi Katsunori, Kazuya Yabuta, 2009. Road temperature mitigation effect of “road cool” a water -retentive material using blast furnace slag. JFE Technical Report, May, No. 13.
Takebayashi H., M. Moriyama, 2012. Study on surface heat budget of various pavements for urban heat island mitigation. Adv. Materials in Science Eng. 42:2971–2979.
The Constructor - Civil Engineering Home, 2017. Information on Pavement types. Retrieved on April. 7, 2017, from the World Wide Web: https://theconstructor.org/transportation/types-of-pavement-flexible-and-rigid-pavement/9570/.
United Nation Population Fund, 1999. Global Population Hits 6 Billion, The State of World 13 Population.
Van Buren M.A., W.E. Watt, J. Marsalek, B.C. Anderson, 2000. Thermal enhancement of storm-water runoff by paved surfaces. Water Research 34(4):1359-1371.
Vardanega P. J., Ph.D., M.ASCE1, 2014. State of the Art: Permeability of Asphalt Concrete. Journal of Mater. in Civ. Eng. 26(1):54-64.
Volder A., T. Watson, B. Viswanathan, 2009. Potential use of pervious concrete for maintaining existing mature trees during and after urban development, Urban For Urban Greening 8:249–256.
Wanphen S. and K. Nagano, 2009. Experimental study of the performance of porous materials to moderate the roof surface temperature by its evaporative cooling effect. Building and Environment 44:338-351.
Waters T. J., 1998. “A study of water infiltration through asphalt road surface materials.” Proc., Int. Symp. on Subdrainage in Roadway Pavements and Subgrades, Asociación Técnica de Carreteras, Madrid, Spain 311–317.
Weng Q., D. Lu, J. Schubring, 2003. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies. Remote Sensing and Environ. 89:467–483.
Westerman J. R., 1998. “AHTD’s experience with Superpave permeability.” Proc., Arkansas Super pave Symp., Little Rock, AR. Retrieved on May 20, 2017 from the World Wide Web: http://www.utexas.edu/research/superpave/articles/jrw10a.html.
Xue Q., 2013. Dynamic behavior of asphalt pavement structure under temperature-stress coupled loading. Applied Thermal Engineering 53:1-7.
Xue Q., L. Liu, 2013. Hydraulic-stress coupling effects on dynamic behavior of asphalt pavement structure material. Construction and Building Materials 43:31–36.
Yamanaka T., A. Takeda, J. Shimada, 1998. Evaporation beneath the soil surface: some observational evidence and numerical experiments, Hydrological Process 12:2193–2203.
Yang J., G. Jiang, 2002. Experimental study on properties of pervious concrete pavement materials. Cement Concrete 33:381–386.
Yong Ye, Xinhua Yang, Chuanyao Chen, 2009. Experimental researches on visco- elastoplastic constitutive model of asphalt mastic. Construction and Build Mater. 23(10):3161–5.
Zhang H.F., X.S. Ge, H. Ye, D.S. Jiao, 2007. Heat conduction and heat storage characteristics of soils. Applied Thermal Engineering 27:369-373.
Zheng Jianlong, Guoping Qian, Ronghua Ying, 2008. Testing thermal viscoelastic constitutive relation of asphalt mixtures and its mechanical application. Journal of Engineering Mechanics 25 (1):34-41.
Zube E., 1962. Compaction of asphalt concrete pavement as related to the water permeability test. Proceedings: 41st Annual Meeting Highway Research Board, Transportation Research Board,Washington,DC 12–37.
電子全文 電子全文(網際網路公開日期:20220725)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔