跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭惠月
研究生(外文):Cheng, Hui-Yueh
論文名稱:不同年代土壤腐植質以及結合金屬特性研究
論文名稱(外文):The humic substances and its binding metal characteristics affecting by different ages
指導教授:陳庭堅
指導教授(外文):Chen, Ting-Chien
口試委員:許正一簡士濠
口試委員(外文):Hseu, Zeng-YeiJien, Shih-Hao
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:土壤腐植質有機質光學指標崩塌地
外文關鍵詞:Soil humic substancesorganic matteroptical indicatorslandslide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
  土壤的組成相當複雜,其中有機質為最重要的成分之一。其功用包括增加土壤團粒構造,進而提高土壤保水力及改良土壤通氣性,並供給土壤微生物生長所需能量性,可使有機質迅速分解也可而提升土壤肥力。本研究針對阿里山山區不同年代崩塌地土壤,分別為1963、1974、1989、2004及2009年代。氣乾土壤利用NaOH萃取土壤腐植質,再利用物理方式分離不同分子量的腐植物質,並利用紫外光/可見光與螢光光譜指標探討腐植質特性。另外分析各分子量HS溶液金屬的濃度以及探討金屬分佈以及金屬含量差異。在自然風化作用下,鐵和鋁是研究結果顯示,隨著崩塌時間增加土壤pH值則會隨之降低。土壤腐植質中金屬濃度皆隨著崩塌地時間的增加而增加,且金屬主要以B分子量(100 kDa - 0.14μm )佔最大比例。金屬分配係數結果顯示Cr、Cu、Ni、Zn、Mn皆會崩塌時間增加而提高金屬與膠體結合能力。螢光圖譜顯示隨著崩塌時間的增長,波峰往長波長區域移動且腐質化程度升高。
  Soil composition is complex. Organic matter (OM) is one of the most important soil components, in which humic substance (HS) accounts for the largest proportion. Soil HSs affect the soil aggregate structure, improve water retention capacity and aeration. In addition, soil OM supplies energy for microbial growth and accelerates the OM decomposition, enhancing soil fertility.This study investigated characteristics of soil humus sampled from landslide soil in different weathering years in southern Taiwan. Weathering study years were 1963, 1974, 1989, 2004, and 2009. Sodium hydroxide (NaOH) solvent was used to extract HS from an Alishan, Taiwan landslide soil. The extracted HS was size-fractioned, with physical methods, into five molecular weight HS solutions including size A (0.14 μm - 0.45 μm), size B (100 kDa - 0.14 μm), size C (10 - 100 kDa), size D (1 - 10 kDa), and size E (< 1 kDa). The sized HS properties were examined with UV/Vis and fluorescence indices. In addition, the sized HS solutions measured metal concentrations to assess metal differences in different weathering years and metal distribution differences between colloidal and truly dissolved phases.The results showed that the soil pH value decreased following a weathering year. Because high humification soil OM is rich in acidic functional groups, it can be released into the soil. Metal content in the HS is increased following weathering years. The size B HS solution (100 kDa - 0.14 μm) accounted for the largest proportion of metal content. The metal distribution coefficient (Kd) of five metals (Cr, Cu, Ni, Zn, and Mn) increased as weathering time increased. Fluorescence peaks moved to a long wavelength region following a weathering year.
摘要 I
目錄 IV
表目錄 VIII
圖目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1土壤有機質 3
2.2溶解性有機質 4
2.3腐植質 5
2.4土壤組成與金屬吸附 6
第三章 材料與方法 7
3.1供試土壤來源 7
3.2實驗藥品與儀器 9
3.2.1藥品與器材 9
3.2.2實驗儀器設備 9
3.3實驗流程 10
3.4供試土壤基本性質分析 13
3.4.1水分含量 13
3.4.2質地分析 13
3.4.3 pH值 14
3.4.4固體總有機碳(TOC)測定 14
3.4.5固體有機質(OM)測定 14
3.4.6溶解性有機碳(DOC)測定 15
3.5金屬全量分析 15
3.6土壤有機質的萃取與分離程序 15
3.6.1 NaOH萃取 15
3.6.2物理性分離 16
3.7紫外線/可見光分光光度計分析 16
3.8螢光光譜儀分析 16
3.9螢光區域積分法 17
3.10金屬分析 20
3.11數據統計與分析 20
第四章 結果與討論 22
4.1 土壤基本性質測定 22
4.2 有機質萃取溶液 24
4.3 金屬分析 28
4.3.1土壤金屬全量濃度–王水消化分析 29
4.3.2 HS溶液金屬分析 32
4.3.3 HS溶液金屬與土壤金屬全量濃度百分比 35
4.3.4 不同分子量HS溶液金屬濃度 36
4.4 金屬分配係數 46
4.4.1 金屬分配係數 46
4.5 UV/Vis指標 48
4.5.1 阿里山崩塌地HS溶液之UV/Vis指標 48
4.6 螢光物種鑑定 51
4.6.1 HS溶液之螢光物種鑑定 54
4.7 螢光指標 59
4.7.1 HS溶液之螢光指標 60
4.8 螢光區域積分法 63
4.9 相關性 64
4.9.1 金屬與UV/Vis指標之相關性 64
4.9.2 金屬與螢光指標之相關性 64
第五章 結論 66
參考文獻 68
作者簡介 72

行政院環境保護署環境檢測所,2001,水中總有機碳檢測方法-燃燒/紅外線測定法,NIEA W530.51C。
李丁來,2007,淨水程序中溶解性有機物之去除:生物濾床及污泥毯澄清池之操作評估,碩士論文,國立交通大學環境工程研究所,新竹。
李孫榮、黃國慶,1998,「行政院國家科學委員會專題研究計畫成果報告土壤中重金屬污染物之宿命與傳輸行為之模式研究及其應用」。
周明玄,2011,鴛鴦湖湖水溶解性有機碳之來源探討,碩士論文,國立台灣大學,生態學與演化生物學研究所,台北。
林瓚良,2015,曾文水庫集水區不同年份崩塌地土壤之碳存量,碩士論文,國立屏東科技大學,水土保持研究所,屏東。
茹至剛,1994,廢水防治工程,第26-162頁。
許正一,2011,「土壤重金屬知多少」,國內學術電子期刊,第468期,第54-59頁。
陳尊賢、許正一,2002,台灣的土壤,台灣地理百科—12,台北。
Battin, T. J., 1998, “Dissolved Organic Matter and its Optical Properties in a Blackwater Tributary of the Upper Orinoco River, Venezuela,” Organic Geochemistry, Vol. 28, No. 9, pp. 561-569.
Bilal, M., Jaffrezic, A., Dudal, Y., Le Guillou, C., Menasseri, S., and Walter, C., 2010, “Discrimination of Farm Waste Contamination by Fluorescence Spectroscopy Coupled with Multivariate Analysis During a Biodegradation Study,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 5, pp. 3093-3100.
Birdwell, J. E. and Engel, A. S., 2010, “Characterization of Dissolved Organic Matter in Cave and Spring Waters Using UV–Vis Absorbance and Fluorescence Spectroscopy,” Organic Geochemistry, Vol. 41, No. 3, pp. 270-280.
Burdige, D. J., Kline, S. W., and Chen, W., 2004, “Fluorescent Dissolved Organic Matter in Marine Sediment Pore Waters,” Marine Chemistry, Vol. 89, No. 1, pp. 289-311.
Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K., 2003, “Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter,” Environmental Science & Technology, Vol. 37, No. 24, pp. 5701-5710.
Chin, Y.-P., Aiken, G., and O'Loughlin, E., 1994, “Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances,” Environmental Science & Technology, Vol. 28, No. 11, pp. 1853-1858.
Chiou, C. T., Malcolm, R. L., Brinton, T. I., and Kile, D. E., 1986, “Water Solubility Enhancement of Some Organic Pollutants and Pesticides by Dissolved Humic and Fulvic Acids,” Environmental Science & Technology, Vol. 20, No. 5, pp. 502-508.
Coble, P. G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51: 325-346.
Frimmel, H. and Frank, W., 1998, “Neoproterozoic Tectono-Thermal Evolution of the Gariep Belt and its Basement, Namibia and South Africa,” Precambrian Research, Vol. 90, No. 1, pp. 1-28.
Gardner, W. H., and Hartge, K. H., 1986. Bulk density, In A. Klut et al. (ed.) Methods of soil analysis, Part 1. Physical and Mineralogical meyhods-Agronomy monograph NO. 9. ASA and SSSA, Madison, Wisconsin, USA, 383-411.
Gee, G. W., Bauder, and J. W., 1986. Particle-size analysis, In A. Klut et al. (ed.) Methods of soil analysis, Part 1. Physical and Mineralogical meyhods-Agronomy monograph NO. 9. ASA and SSSA, Madison, Wisconsin, USA, 383-411.
He, X., Xi, B., Wei, Z., Guo, X., Li, M., An, D., and Liu, H., 2011, “Spectroscopic Characterization of Water Extractable Organic Matter During Composting of Municipal Solid Waste,” Chemosphere, Vol. 82, No. 4, pp. 541-548.
Henderson, R., Baker, A., Murphy, K., Hambly, A., Stuetz, R., and Khan, S., 2009, Fluorescence as a Potential Monitoring Tool for Recycled Water Systems: A review, Water Research, Vol. 43, pp. 863-881.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.-M., and Parlanti, E., 2009, “Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary,” Organic Geochemistry, Vol. 40, No. 6, pp. 706-719.
Huo, S., Xi, B., Yu, H., He, L., Fan, S., and Liu, H., 2008, Characteristics of Dissolved Organic Matter (DOM) in Leachate with Different Landfill Ages, Journal of Environmental Sciences, Vol. 20, pp. 492-498.
Hur, J., Lee, D.-H., and Shin, H.-S., 2009, “Comparison of the Structural, Spectroscopic and Phenanthrene Binding Characteristics of Humic Acids from Soils and Lake Sediments,” Organic Geochemistry, Vol. 40, No. 10, pp. 1091-1099.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E., 2000, “Controls on the Dynamics of Dissolved Organic Matter in Soils: a Review,” Soil Science, Vol. 165, No. 4, pp. 277-304.
Lapworth, D. J. and Kinniburgh, D., 2009, “An R Script for Visualising and Analysing Fluorescence Excitation–Emission Matrices (EEMs),” Computers and Geosciences, Vol. 35, No. 10, pp. 2160-2163.
Ma, H., Allen, H. E., and Yin, Y., 2001, “Characterization of Isolated Fractions of Dissolved Organic Matter from Natural Waters and a Wastewater Effluent,” Water Research, Vol. 35, No. 4, pp. 985-996.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T., 2001, “Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity,” Limnology and Oceanography, Vol. 46, No. 1, pp. 38-48.
Mclean, E. O., 1982. Soil pH and lime requirement. In A. L. Page et al. (eds.) Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy monograph NO. 9. ASA and SSSA, Madison, Wisconsin, USA, 199-244.
Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M., 2000, “Dissolved Organic Matter Fluorescence Spectroscopy as a Tool to Estimate Biological Activity in a Coastal Zone Submitted to Anthropogenic Inputs,” Organic Geochemistry, Vol. 31, No. 12, pp. 1765-1781.
Rav-Acha, C. and Rebhun, M., 1992, “Binding of Organic Solutes to Dissolved Humic Substances and its Effects on Adsorption and Transport in the Aquatic Environment,” Water Research, Vol. 26, No. 12, pp. 1645-1654.
Santos, L.M., Simoes, M.L., Melo, W.J., Martin-Neto, L., Pereira-Filho, E.R., 2010. Application of chemometric methods in the evaluation of chemical and spectroscopic data on organic matter from oxisols in sewage sludge applications. Geoderma 155, 121–127.
Thurman, E. M., 1985, Organic Geochemistry of Natural Waters, Kluwer Academic Pub.
Wang, Z., Wu, Z., and Tang, S., 2009, “Characterization of Dissolved Organic Matter in a Submerged Membrane Bioreactor by Using Three-Dimensional Excitation and Emission Matrix Fluorescence Spectroscopy,” Water Research, Vol. 43, No. 6, pp. 1533-1540.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top