跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳政杰
研究生(外文):Wu, Cheng-Chieh
論文名稱:土壤中汞分布型態對萃取含汞污染土壤之影響
論文名稱(外文):Effects of mercury speciation on extraction ofcontaminated soils
指導教授:葉桂君葉桂君引用關係黃文彥黃文彥引用關係
指導教授(外文):Yeh, Kuei-JyumHuang, Wen-Yen
口試委員:黃文彥陳庭堅葉桂君
口試委員(外文):Huang, Wen-YenChen, Ting-ChienYeh, Kuei-Jyum
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:37
中文關鍵詞:溶劑萃取碘化鉀序列萃取土壤污染
外文關鍵詞:MercurySolvent extractionAcidKISequential extractionSoil contamination
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
溶劑萃取法相對於熱脫附法節能及經濟。汞吸附於土壤除了受於陽離子交換容量大小、土壤中有機質的多寡、土壤的pH值高低及土壤氧化還原電位影響,汞的分布型態也是主要影響因子。
本研究所使用土壤取自某受汞污染場址,探討土壤中汞型態分布對於溶劑萃取汞之影響,使用之萃取劑為0.01 M碘化鉀(KI),且分別在以下5個pH值範圍(pH=0.5~2.77、pH=0.66~3.83、pH=0.76~5.35、pH=1.21~5.80、pH=1.47~6.68)添加2%過氧化氫(氧化還原電位650 mV以上)萃取三次。
結果顯示高濃度汞污染測試土壤(229 mg/kg)在土壤溶液pH=0.5~2.77/0.01 M KI/2%過氧化氫或pH=1.47~6.68/0.01 M KI/2%過氧化氫條件下萃取去除率最高為86%。汞分布主要為離子可交換態為48%,而溶劑萃取對於離子可交換態、碳酸鹽結合態萃取效果最好,在土壤溶液pH=0.5~2.77、pH=0.66~3.83、pH=0.76~5.3三種條件下萃取,去除率皆達90%以上,但若pH再提高,其去除率會隨著pH升高而降低,當土壤pH值小於4及大於7時,亦對汞之有機結合態有良好的萃取效果。

Relative to the thermal desorption, solvent extraction is an energy-conserving and economic technology. The mercury adsorbed on the soil is primarily affected by the cation exchange capacity, organic matter content, pH and oxidation-reduction potential of the soil. The Hg removal could be affected by its species in soils.
In this study, the tested soil was taken from a mercury-contaminated site. The effect of mercury speciation in the soil on the solvent extraction efficiency was investigated. The mercury contaminated soil was extracted by the 0.01 M KI solution three times in five pH ranges (pH=0.5~2.77、pH=0.66~3.83、pH=0.76~5.35、pH=1.21~5.80、pH=1.47~6.68) and the addition of 2% H2O2 (to maintain the redox potential of above 650 mV).
The Hg concentration in the tested soil is high (229 mg/kg). The Hg removal efficiency is 86% by extraction conditions of soil solution at pH=0.5~2.77/0.01 M KI/2% H2O2 or pH=1.47~6.68/0.01 M KI/2% H2O2 conditions extraction,
The mercury speciation in the soil is primarily the ion exchangeable species(48%). The Hg in ion exchangeable and carbonate-bound species has the best extraction efficiency. The extraction at pH=0.5~2.77,pH=0.66~3.83 and pH=0.76~5.38 are above 90%. However, if the pH is further increased, the removal efficiency will decrease. When the extraction pH is less than 4 and more than 7, the Hg of organic-matter-bound species has a good extraction efficiency.

目錄
摘要 I
Abstract II
謝誌 IV
表目錄 VII
圖目錄 VIII
第1章 前言 1
1.1研究緣起 1
第2章 文獻回顧 3
2.1污染物-汞 3
2.1.1污染來源 4
2.1.2污染物分布與傳輸 5
2.1.3受汞污染土壤整治技術 6
2.2溶劑萃取法 12
2.2.1溶劑萃取法之應用 12
2.2.2取溶劑之選擇 13
2.3汞序列萃取 15
第3章 材料與方法 17
3.1實驗材料 17
3.1.1供試土壤 17
3.1.2萃取溶劑 17
3.2實驗流程與架構 17
3.3實驗方法 18
3.3.1土壤篩分 18
3.3.2 XRF驗證實驗 18
3.3.3土壤緩衝能力試驗 19
3.3.4汞之溶劑萃取 19
3.3.5汞之序列萃取 20
第4章 結果與討論 21
4.1萃取含汞土壤之效果 21
4.2 pH對萃取效果之影響 22
4.2.1 229 mg/kg汞之土壤 22
第5章 結論 30
參考文獻 32
作者簡介 37
李欣怡,2012,汞與戴奧辛污染土壤熱脫附處理研究,碩士論文,國立臺北科技大學,環境工程與管理研究所,台北。
程淑芬,劉仁煜,2004,「污染場址中不同粒徑土壤對重金屬吸附特性之研究」,台灣環境資源永續發展協會第五屆學術研討會,台中,論文編號:4-19。
馮淑雁,2010,熱處理程序對土壤基本性質、汞型態與污染物去除效果影響,碩士論文,國立高雄第一科技大學,環境與安全衛生工程系,高雄。
劉姿伶,2015,以有機溶劑萃取受PCDD/Fs污染土壤之評估,碩士論文,國立屏東科技大學環境工程與科學系,環境工程與科學系,屏東。
顏佳慧,2003,汞污染場址整治復育與監督管理之實證研究,碩士論文,國立台北科技大學,環境規劃與管理研究所,台北。
Biester, H., Muller, G., Scholer. F. H., 2002, “Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants,ˮ The Science of the Total Environment. Vol. 284, pp. 191-203
Bisone S.,Blais Jean-François., Drogui P., Mercier G., 2012, Toxic Metal Removal from Polluted Soil by Acid Extraction.
Brookins, D. G., 1988, Eh-pH Diagrams for Geochemistry, Springer, New York, NY, USA.
Clever, H. L., Johnson, S. A., Derrick M. E., 1985, “The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions,ˮ J. Phys. Chem. Ref. Data, Vol. 14, No. 3.
Cox, D. C., Shoesmith, A. M. and Ghosh, M. M., 1996, “Electrokinetic Remediation of Mercury-Contaminated Soils Using Iodine/Iodide Lixiviant,ˮ Environ. Sci. Technol. Vol. 30, pp. 1933-1938.
Darban, A. K., Ayati, B., Yong, R. N., Khodadadi, A., Kiayee, A., 2009, Enhanced Electrokinetic Remediation of Mercury-Contaminated Tailing Dam Sediments.
Federal Remediation Technologies Roundtable (FRTR). 1995, Cost and Performance Report. Parsons Chemical/ETM Enterprises Superfund Site Grand Ledge, Michigan.
Federal Remediation Technologies Roundtable (FRTR). 1995. Technology Cost and Performance – Soil Washing at the King of Prussia Technical Corporation Superfund Site.
Federal Remediation Technologies Roundtable (FRTR), 2007, Treatment Technologies for Mercury in Soil, Waste, and Water, U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation Washington, DC 20460.
Forstner U., 1981, Metal pollution in aquatic environment. Second Edition. Berlin:Springer-Verlag.
Hempel, M., Wilken, R. D., Geilhufe, C., Richter-Politz, I (van den Brink WJ, Bosman R, Arendt)., 1995, Contaminated Soils. Netherlands: Kluwer Academic Publishers.
HUANG, P., ZHANG, J. B., ZHU, A. N., ZHANG, C. Z., 2009, “Acid and Alkali Buffer Capacity of Typical Fluvor-Aquic Soil in Huang-HuaiHai Plain,ˮ Agricultural Sciences in China, 8(11), pp. 1378-1383.
Jing, Y. D., He, Z. L., Yang, X. E., 2007, “Effects of pH, organic acids, and competitive cations on mercury desorption in soils,ˮ Chemosphere vol. 69, pp. 1662–1669.
Jingying, X., Kleja, D. B., Biester, H., Lagerkvist, A., Kumpiene, J., 2014, “Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil,ˮ Chemosphere 109 pp. 99–105.
Khwaja, R. A., Bloom, R. P., Brezonik, L. P., 2006, “Binding Constants of Divalent Mercury (Hg2+) in Soil Humic Acids and Soil Organic Matter,ˮ Environ. Sci. Technol. Vol. 40, No. 3, pp. 844–849.
Lamge, N.A., “Handbook of Chemistry, McGraw-Hiill,ˮ New York, 1976, pp. 288-290.
Mulligan, N. C., Yo ng, N. R., Gibbs F. B., 2001, “An evaluation of technologies for the heavy metal remediation of dredged sediments,ˮ Journal of Hazardous Materials Vol 85, pp. 145–163.
Reddy, R. K, ASCE, M., Chaparro, C., Saichek, E. R., 2003, “Iodide-Enhanced Electrokinetic Remediation of Mercury-Contaminated Soils,ˮ J. Environ. Eng.Vol. 129, pp. 1137-1148.
Sanchaz, F., Mattus, C. H., Morris, M. I. and Kosson, D. S. 2002, “Used of a New Leaching Test Framework for Evaluating Alternative Treatment Process for Mercury-Contaminated Soils,ˮ Environmental Engineering Science, Vol. 19, pp. 251-269.
Schuster, E., 1991, “The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature,ˮ Water, Air, and Soil Pollution vol. 56, pp. 667-680.
Selby, J., and L.G. Twidwell., 2004, The Recovery and Recycle of Mercury from Chlor-Alkali Plant Wastewater Sludge. Web site accessed on December 8.
Shuman, L. M., 1985, Fraction Method for Microelements. Soil Sci. Vol. 140 pp. 11-21.
Stein, E. D., Cohen, Y., Winer, A. M., 1996, “Environmental distribution and transformation of mercury compounds,ˮ Crit Rev Environ Sci Technol. Vol. 26 pp. 1-43.
Tessier, A., Campbell, P. G. C., Bisson, M., 1979, “Sequential Extraction Procedure for the Speciation of Particulate Trace Metals,ˮ Analytical chemistry, vol. 51, no. 7.
U.S. Department of Energy Office of Science and Technology. 2002. Innovative Technology Summary Report: The SepraDyne™-Raduce System for Recovery of Mercury from Mixed Waste. September. DOE/EM-0633.
U.S. EPA., 2004, E-mail from Larry Kimmel, U.S EPA to Danielle Wohler, Tetra Tech EM Inc., regarding S/S of mercury at the Rocky Mountain Arsenal site. November 18.
U.S. EPA Office of Research and Development. 2004. Minergy Corporation Glass Furnace Technology Evaluation Report. EPA/540/R-03/500.
Villen-Guzman, M., Garcia-Rubio, A., Paz-Garcia M. J., Rodriguez-Maroto, M. J., Garcia-Herruzo, F., Vereda-Alonso, C., Gomez-Lahoz, C., 2015, “The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil,ˮ Electrochimica Acta Vol. 181, pp. 82–89.
Weber, J. H., 1993, “Review of possible paths for abiotic methylation of Mercury(II). in the aquatic environment,ˮ Chemosphere vol. 26(11), pp. 2063-2077.
Xia, K., Skyllberg, U. L., Bleam, W. F., Bloom, P. R., Nater, E. A., Helmke, P. A., 1999, “X-ray absorption spectroscopic evidence for the complexation of Hg(II). by reduced sulfur in soil humic substances,ˮ Environ Sci Technol vol. 33(2), pp. 257-261.
Yin, Y., Alen, H. E., Huang, C. P., 1997, “Kinetics of mercury(II) adsorption and desorption on soil,ˮ Environ Sci Technol vol. 31 pp. 496-503.
Zagury G. J., Neculita C. M., Deschênes L., Mercury Speciation in Highly Contaminated Soils from Chlor-Alkali Plants. Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, Quebec, Canada.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊