(3.231.230.175) 您好!臺灣時間:2021/04/16 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳姿瑩
研究生(外文):Zi-Ying Wu
論文名稱:微結構分佈對表面濕潤性影響之研究
論文名稱(外文):The Study of Effect of the Distribution of Microstructures on Surface Wettability
指導教授:鄭文軍鄭文軍引用關係
指導教授(外文):Wenjun Zheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:表面能接觸角翻模轉印法微結構濕潤性聚二甲基矽氧烷
外文關鍵詞:replica molding methodcontact anglesurface free energymicrostructureswettabilityPolydimethylsiloxane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
調控固體表面濕潤性程度,為防水、防汙及微流體等應用上的關鍵要素。藉由化學或物理的手段來達到改變表面濕潤性,然而,化學方式只具有短暫的效用,因此,透過表面粗糙化的物理方式則成為主流,引起許多研究者開始著手製作多種表面微結構以修飾疏水材料表面。
聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)為一種有機高分子聚合物,展現高透光、可塑性及撓曲性,且具有低表面能的性質,為一款疏水性材料。因此,利用聚二甲基矽氧烷之良好的可加工性質,使用軟微影技術可將微結構圖案轉印至其表面上,且製備工作程序簡單且快速。
於本研究中,我們利用二次翻模轉印法將各向異性及各向同性微結構的疏水性葉面複印於聚二甲基矽氧烷表面,製作出具有微結構的疏水性表面。透過光學顯微鏡的觀察及接觸角與表面能的量測,探討樣品表面微結構排列分佈與其表面濕潤性之相關性。
研究發現樣品表面微結構的異向性排列引致表面能量異向性分佈,使液滴於平行葉脈方向受毛細作用力向前延展;而垂直葉脈方向則因微結構無序排列,致使液滴沿此方向延滯情形明顯,形成各向異性濕潤現象。其中具大黍微結構之聚二甲基矽氧烷樣品表面所呈現濕潤異向性及疏水特性最為顯著,可作為方向性自潔之應用。
Controlling wettability of solid surface plays an important role for applications in water-repellent, anti-fouling, microfluidics, and so on. Modification of surface wettability is achieved through either chemical or physical means; however, chemical means suffer the drawback of a short-lived effect. Therefore, physical means of modifying surface wettability are typically achieved through surface roughening, which caused many researchers began to fabricate a variety of surface microstructure to modification of hydrophobic material surface.
Polydimethylsiloxane, a silicon-based polymer, is a transparent, plastic and flexible material. Besides, the properties of low surface free energy makes it be hydrophobic. Accordingly, the use of PDMS with high plasticity to transfer the microstructure patterns to PDMS surfaces by soft lithography, and the production process is simple and efficient.
In this study, replica molding method is involved to produce the anisotropic and isotropic microstructures of hydrophobic leaves which are transferred to PDMS surfaces. After twice replica molding process, we duplicate the surface microtextures of the original leaves, enhancing the hydrophobicity of flat PDMS. Then we will observe surface morphology, contact angle and surface free energy to analyze microstructure distribution and surface wettability of PDMS samples. And we find that the anisotropic distribution of surface free energy will be caused by the anisotropic arrangement of PDMS surface microtextures. Accordingly, the length of the droplet is stretched since it is subjected to a capillary force parallel to the veins; however, due to the existence of the energy barrier in the direction perpendicular to the veins, the width of the droplet is shortened. The PDMS surface microstructures of Panicum maximum Jacq. with anisotropic wettability and hydrophobicity is the most significant among all leaves which can be applied to directional self-cleaning.
中文審定書........................................................................i
英文審定書.......................................................................ii
誌謝................................................................................iii
中文摘要..........................................................................iv
英文摘要...........................................................................v
第一章 緒論.....................................................................1
1-1 前言.....................................................................1
1-2 研究動機及研究內容...............................................3
第二章 研究理論介紹..........................................................4
2-1 表面張力................................................................4
2-2 靜態接觸角與表面濕潤性..........................................5
2-3 動態接觸角與接觸角延遲現象................................... 7
2-4 表面自由能及測定理論..............................................8
2-4-1 表面自由能...................................................... 8
2-4-2 表面自由能量測................................................ 9
2-5 表面濕潤模型理論....................................................11
2-5-1 Wenzel 模型....................................................11
2-5-2 Cassie-Baxter 模型..........................................12
2-5-3 Wenzel與Cassie-Baxter模型的接觸角遲滯現象...13
2-6 蓮葉效應(Lotus effect)..............................................15
第三章 實驗材料、樣品製備及儀器設備....................................17
3-1 聚二甲基矽氧烷........................................................17
3-2 樣品製備理論及流程.................................................19
3-2-1 翻模轉印法(Replica Molding Method, REM)........19
3-3 儀器設備介紹...........................................................21
3-3-1 正交偏光顯微鏡.................................................21
3-3-2 接觸角量測儀....................................................22
3-3-3 電漿清洗機........................................................23
第四章 疏水性植物葉面分析....................................................25
4-1 引言........................................................................25
4-2 植物葉面微結構觀察.................................................26
4-2-1 各向異性微結構................................................26
4-2-2 各向同性微結構................................................33
4-3 靜態接觸角量測........................................................36
4-3-1 各向異性微結構................................................36
4-3-2 各向同性微結構................................................38
第五章 具葉面微結構之聚二甲基矽氧烷表面特性分析................40
5-1 引言........................................................................40
5-2 聚二甲基矽氧烷樣品表面微結構觀察...........................41
5-2-1 各向異性微結構.................................................41
5-2-2 各向同性微結構.................................................46
5-3 靜態接觸角量測與液滴輪廓觀測..................................49
5-3-1 各向異性微結構.................................................49
5-3-2 各向同性微結構.................................................51
5-3-3 液滴靜態接觸角於微結構樣品表面分析與討論.......54
5-4 動態接觸角量測.........................................................56
5-4-1 各向異性微結構.................................................56
5-4-2 各向同性微結構.................................................58
5-5 表面能量測...............................................................61
5-5-1 各向異性微結構.................................................61
5-5-2 各向同性微結構.................................................64
第六章 總結與未來展望........................................................... 67
6-1 總結.........................................................................67
6-2 未來工作及展望.........................................................69
參考文獻................................................................................70
[1]S. Herminghaus, "Roughness-induced non-wetting," Europhysics Letters, vol. 52, p. 165, 2000.
[2]W. Barthlott, C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, vol. 208, p. 1, 1997.
[3]J. Han, D. Lee, C. Ryu, K. Cho, "Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding," J. Am. Chem. Soc., vol. 126, p. 4796, 2004.
[4]M.-F. Lai, C.-Y. Chen, C.-P. Lee, H.-T. Huang, T.-R. Ger, and Z.-H. Wei, "Cell patterning using microstructured ferromagnetic thin films," Applied Physics Letters, vol. 96, p. 183701, 2010.
[5]Y. Chen, B. He, J. Lee, and N. A. Patankar, "Anisotropy in the wetting of rough surfaces," J. Colloid Interface Sci., vol. 281, p. 458, 2005.
[6]C.-Y. Huang, M.-F. Lai, W.-L. Liu, and Z.-H. Wei, "Anisotropic Wettability of Biomimetic Micro/Nano Dual-Scale Inclined Cones Fabricated by Ferrofluid-Molding Method," Advanced Functional Materials, vol. 25, p. 2670, 2015.
[7]J. Song, H. Liu, M. Wan, Y. Zhu, and L. Jiang, "Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization," J. Mater. Chem. A, vol. 1, p. 1740, 2013.
[8]E. Mele, S. Girardo, and D. Pisignano, "Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity," Langmuir, vol. 28, p. 5312, 2012.
[9]T. Zhang, M. Li, B. Su, C. Ye, K. Li, W. Shen, et al., "Bio-inspired anisotropic micro/nano-surface from a natural stamp: grasshopper wings," Soft Matter, vol. 7, p. 7973, 2011.
[10]Y. Zheng, X. Gao, and L. Jiang, "Directional adhesion of superhydrophobic butterfly wings," Soft Matter, vol. 3, p. 178, 2007.
[11]D. Xia, L. M. Johnson, and G. P. Lopez, "Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications," Adv Mater., vol. 24, p. 1287, 2012.
[12]D. Zhu, X. Li, G. Zhang, X. Zhang, X. Zhang, T. Wang, et al., "Mimicking the rice leaf--from ordered binary structures to anisotropic wettability," Langmuir, vol. 26, p. 14276, 2010.


[13]J. Gao, Y. Liu, H. Xu, Z. Wang, and X. Zhang, "Mimicking biological structured surfaces by phase-separation micromolding," Langmuir, vol. 25, p. 4365, 2009.
[14]F. X. Zhang, H. Y. Low, "Anisotropic Wettability on Imprinted Hierarchical Structures," Langmuir, vol. 23, p. 7793, 2007.
[15]D. Wu, J.-N. Wang, S.-Z. Wu, Q.-D. Chen, S. Zhao, H. Zhang, et al., "Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding," Advanced Functional Materials, vol. 21, p. 2927, 2011.
[16]G. M. Whitesides, Y. Xia, " Soft Lithography," Angew. Chem. Int. Ed., vol. 37, p. 550, 1998.
[17]Z.-G. Guo, W.-M. Liu, and B.-L. Su, "A stable lotus-leaf-like water-repellent copper," Applied Physics Letters, vol. 92, p. 063104, 2008.
[18]Z. Guo and W. Liu, "Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure," Plant Science, vol. 172, p. 1103, 2007.
[19]S.-M. Lee and T. H. Kwon, "Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf," Journal of Micromechanics and Microengineering, vol. 17, p. 687, 2007.
[20]J. Gao, Y. Liu, H. Xu, Z. Wang, and X. Zhang, "Mimicking biological structured surfaces by phase-separation micromolding," Langmuir, vol. 25, p. 4365, 2009.
[21]胡雅婷,“利用聚二甲基矽氧烷表面結構控制液晶分子排列”,博士論文,國立中山大學,台灣, 2015.
[22]T. Young, "An essay on the cohesion of fluids," Philos. Trans. R. Soc. London, vol. 95, p. 65, 1805.
[23]王奔, 張亞斌, 郭志光, “穩定超疏水性表面的理論進展”,物理學報,第62期, p. 146801, 2013.
[24]洪嘉煌,“反射異向性光譜對液晶配向薄膜表面特性之研究”,碩士論文,國立中山大學,台灣, 2010.
[25]H. W. Fox, W. A. Zisman, "The spreading of liquids on low energy surfaces," J. Colloid Sci., vol. 7, p. 428, 1952.
[26]F. M. Fowkes, "Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces," J. Phys. Chem., vol. 66, p. 382, 1962.
[27]D. K. Owens, R. C. Wendt, "Estimation of the surface free energy of polymers," J. Appl. Polym. Sci., vol. 13, p. 1741, 1969.
[28]R. N. Wenzel, "Resistance of solid surfaces to wetting by water,"Ind. Eng. Chem., vol. 28, p. 988, 1936.
[29]A. B. D. Cassie, S. Baxter, "Wettability of porous surfaces,"Trans. Faraday Soc., vol. 40, p. 546, 1944.
[30]Y. Su, B. Ji, K. Zhang, H. Gao, Y. Huang, and K. Hwang, "Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces," Langmuir, vol. 26, p. 4984, 2010.
[31]M. Nosonovsky and B. Bhushan, "Biologically Inspired Surfaces: Broadening the Scope of Roughness," Advanced Functional Materials, vol. 18, p. 843, 2008.
[32]Y. Zhang, Y. Chen, L. Shi, J. Li, and Z. Guo, "Recent progress of double-structural and functional materials with special wettability," J. Mater. Chem., vol. 22, p. 799, 2012.
[33]W. J. Zheng, M. H. Huang, " Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer," Thin Solid Films, vol. 520, p. 2841, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔