(3.238.249.17) 您好!臺灣時間:2021/04/14 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:宋承豫
研究生(外文):Cheng-yu Sung
論文名稱:具單一螢光基之聚乳酸:立體錯合物及靜電紡絲奈米纖維
論文名稱(外文):Polylactides with a fluorecscent unit :stereocomplex and electrospun nanofibers
指導教授:洪金龍
指導教授(外文):Jin-Long Hong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:聚乳酸聚集誘導發光立體錯合物靜電紡絲羅丹明胼
外文關鍵詞:stereocomplexElectrospinningrhodamine hydrideAIEgensPolylactide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
結晶的聚乳酸能有效地增強鄰近具有聚集誘導發光分子內限制轉動的能力,進而提高發光的效率。聚集誘導四苯基噻酚尾端基之聚乳酸立體錯合物具有結晶增強發光的性質。聚乳酸的放光主要為單體放光,其立體錯合物則有單體放光和激發二聚物放光。對於聚乳酸而言,熱退火可以增強單體放光,而熱退火對於其立體錯合物可以將單體放光轉換為很強的二聚物放光。在任何情況下,立體錯合物緊密堆積的晶體結構發光效率更高。
靜電紡絲技術可以簡易製備許多種類的高分子奈米纖維。羅丹明胼聚乳酸的奈米纖維藉由開環聚合左旋-丙交酯合成三臂高分子並且對酸鹼和錫金屬離子有高選擇性。奈米纖維在酸鹼值為 2 或12時有開/關特性。
Crystalline polylactide chains are efficient in imposing restricted intramolecular rotation on neighboring luminogens active in aggregation-induced emission (AIE) property, thereby increasing emission efficiency of the AIE-active luminogens (AIEgens). This crystallization-promoted emission enhancement (CPEE) behavior was demonstrated in the L- and D-polylactides (as TP-PLLA and TP-PDLA) terminated with an AIEgenic tetraphenylthiophene (TP) and in the stereocomplex (SC-PLA) from the stoichiometric mixture of TP-PLLA and TP-PDLA. Homopolylactides of TP-PLLA and TP-PDLA emit mainly with the monomer emission, in contrast, SC-PLA emits with both monomer and excimer emissions. Thermal annealing acted to enhance monomer emission of TP-PLLA and TP-PDLA but for the complex SC-PLA, thermal annealing converted the monomer emission into a large excimer emission. In any case, the intimately-packed crystalline structure of SC-PLA contributes to its high emission efficiency compared to the constituent TP-PLLA and TP-PDLA.
Electrospinning technique can process many kinds of continuous polymer fiber and it is very easy for process. Electrospun of rhodamine hydride PLA nanofiber was synthesized three armed polymer by ring opening polymerization of D-lactide and was highly selective for pH and tin ion. Nanofiber performances turn on/off properties in the condition of pH=2 or pH=12.
Outline of contents
Vertification letter from the Oral Examination Committee……………………………..i
Chinese Abstract.............................................…………………………………......…..ii
English Abstract...................................................………………………………….....iii
Outline of Contents...…………………….....………....………....…………....….…....v
List of Figure……………………………………………………………...…....….....vii
List of Scheme............................................................................................…..….........ix
List of Table...................................................................................................................ix
List of Supporting information…………………………………………………..…….x
1-1. Introduction……………………………...………………………………………..2
1-2. Experimental section……………………………...................................................6
1-3. Instrumentations………………………..................................................................8
1-4. Results and discussion……...................................................................................10
1-5. Conclusion…………………………………………………………………….…20
1-6. References …........................................................................................................29
1-7. Supporting information………………………………………………………….33
2-1. Introduction……………………………………………………………………...43
2-2. Experimental section…………………………………………………………….47
2-3. Instrumentations…………………………………………………………………50
2-4. Results and discussion……….……………………………….…….……………51
2-5. Conclusion…………………………………………………………………….…57
2-6. References …........................................................................................................70
2-7. Supporting information………………………………………………………….76
CH1
(1) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740–1741.
(2) B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem., 2001, 11, 297–2978.
(3) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332–4353.
(4) D. Ding, K. Li, B. Liu and B. Z. Tang, Acc. Chem. Res., 2013, 46, 2441–2453.
(5) Z. Zhao, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem., 2012, 22, 23726–23740.
(6) M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, J. Mater. Chem., 2010, 20, 1858–1867.
(7) Z. Zhao, J. W. Y. Lam and B. Z. Tang, Soft Matter, 2013, 9, 4564–4570.
(8) Aggregation-Induced Emission: Fundamentals, ed. A. Qin and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013.
(9) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429–5479.
(10) H. Wang, E. Zhao, J. W. Y. Lam and B. Z. Tang, MaterialToday, 2015, 18, 365–377.
(11) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, and B. Z. Tang, Chem. Rev., 2015, 115, 11718–11940.
(12) Y. Dong, J. W. Y. Lam, A. Qin, J. Sun, J. Liu, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams, H. S. Kwok and B. Z. Tang, Chem. Commun., 2007, 3255–3257.
(13) H. Tong, Y. Dong, H. Häussler, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, J. Sun and B. Z. Tang, Chem. Commun., 2006, 1133–1135.
(14) Y. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams and B. Z. Tang, Chem. Commun., 2007, 40 –42.
(15) H. Tong, Y. Dong, Y. Hong, H. Häussler, J. W. Y. Lam, H. H. Y. Sung, X. Yu, J. Sun, I. D. Williams, H. S. Kwok and B. Z. Tang, J. Phys. Chem. C, 2007, 111, 2287–2294.
(16) L. Qian, B. Tong, J. Shen, J. Shi, J. Zhi, Y. Dong, F. Yang, Y. Dong, J. W. Y. Lam, Y. Liu and B. Z. J. Tang, J. Phys. Chem. B, 2009, 113, 9098 – 9103.
(17) W. L. Chien, C. M. Yang, T. L. Chen, S. T. Li and J. L. Hong, RSC Adv., 2013, 3, 6930–6938.
(18) Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 2000, 21, 117–132.
(19) P. De Santis and P. J. Kovacs, Biopolymers, 1968, 6, 299–306.
(20) J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan and Y. Ozaki, Macromolecules, 2005, 38, 8012–8021.
(21) B. Kalb and A. J. Pennings, Polymer, 1980, 21, 607–612.
(22) J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okinara and B. Lotz, Polymer, 2000, 41, 8921–8930.
(23) L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali and B. Lotz, Polymer, 2000, 41, 8909–8919.
(24) W. Hoogsteen, A. R. Postema, A. J. Pennings, G. ten Brinke and P. Zugenmaier, Macromolecules, 1990, 23, 634–642.
(25) J. Zhang, K. Tashiro, H. Tsuji and A. J. Domb, Macromolecules, 2008, 41, 1352–1357.
(26) Y. Li, C. Hana, Y. Bian, Q. Dong, H. Zhao, X. Zhang, M. Xu and L. Don, Thermochim. Acta, 2014, 580, 53–62.
(27) T. S. Hsiao, P. C. Huang, L. Y. Lin, D. J. Yang and J. L. Hong, Polym. Chem., 2015, 6, 2264–2273.
(28) Hideto Tsuji, Macromol. Biosci., 2005, 5, 569–597
(29) J. Zhang, K. Tashiro, H. Tsuji and A. J. Domb, Macromolecules, 2007, 40, 1049–1054.
(30) T. Okihara, M. Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, Y. Ikada, J. Macromol. Sci., -Phys., 1991, B30, 119–140.
(31) Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 1987, 20, 904–906.
(32) K. Masutani, S. Kawabata, T. Aoki and Y. Kimura, Polym Int., 2010, 59, 1526–1530.
(33) Y. Tachibana, H. Takayama and K. Kasuya, Polymer Degradation and Stability, 2015, 112, 185–191.
(34) R. Chang, G. Shan, Y. Bao, and P. Pan, Macromolecules, 2015, 48, 7872−7881.
(35) L. Cartier, T. Okihara, B. Lotz, Macromolecules, 1997, 30, 6313–6322.
(36) J. R. Sarasua, N. L. Rodríguez, A. L. Arraiza and E. Meaurio, Macromolecules 2005, 38, 8362–8371.
(37) R. H. Chien, C. T. Lai and J. L. Hong, J. Phys. Chem. C. 2011, 115, 5958–5965
CH2
(1) K. Rurack, U. Resch-Genger, Chem. Soc. Rev., 2002, 31,116−127.
(2) V. Amendola, L. Fabbrizzi, F. Foti, M. Licchelli, C. Mangano, P. Pallavicini, A. Poggi, D. Sacchi, A. Taglietti, Chem. Rev., 2006, 250, 273−299.
(3) Y. K. Yang, K. J. Yook, J. Tae, J. Am. Chem. Soc., 2005, 127, 16760−16761.
(4) J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W. Liu, Org. Lett., 2007, 9, 4567−4570.
(5) L. Tang, Y. Li, R. Nandhakumar, J. Qian, Monatsh. Chem., 2010, 141, 615−620.
(6) Mc Graw – Hill., “Encyclopedia of Science and Technology”, Vth Edition, Mc Graw – Hill Book Company, New York (1982).
(7) C. Reilly, “Metal Contamination of Food”, Applied science publishers Ltd, London (1980).
(8) Marczenko, Z, “Spectrophotometric Determination of Elements”, Ellis Horwood Ltd. England (1979).
(9) B. B. Lowell, B. M. Spiegelman, Nature, 2000, 404, 652−660.
(10) X. L. Shi, G. J. Mao, X. B. Zhang, H. W. Liu, Y. J. Gong, Y. X. Wu, L. Y. Zhou, J. Zhang, W. Tan, Talanta, 2014, 130, 356−362.
(11) A. Liu, M. Hong, W. Yang, S. Lu, D. Xu, Tetrahedron, 2014, 70, 6974−6979.
(12) Z. Q. Hu, M. Li, M. D. Liu, W. M. Zhuang, G. K. Li, Dyes Pigm., 2013, 96, 71−75.
(13) J. Fan, C. Lin, H. Li, P. Zhan, J. Wang, S. Cui, M. Hu, G. Cheng, X. Peng, Dyes Pigm., 2013, 99, 620−626.
(14) A. J. Weerasinghe, C. Schmiesing, E. Sinn, Tetrahedron Lett., 2009, 50, 6407−6410.
(15) J. Wang, H. Li, L. Long, G. Xiao, D. Xie, J. Lumin., 2012, 132, 2456−2461.
(16) Z. Q. Hu, C. S. Lin, X. M. Wang, L. Ding, C. L. Cui, S. F. Liu, H. Y. Lu, Chem. Commun., 2010, 46, 3765−3767.
(17) (a) C. H. Lee, H. Miyaji, D. W. Yoon and J. L. Sessler, Chem. Commun., 2008, 24; (b) J. S. Kim and D. T. Quang, Chem. Rev., 2007, 107, 3780; (c) A. T. Wright and E. V. Anslyn, Chem. Soc. Rev., 2006, 35, 14; (d) J. Yoon, S. K. Kim, N. J. Singh and
K. S. Kim, Chem. Soc. Rev., 2006, 35, 355; (e) P. A. Gale, Acc. Chem. Res., 2006, 39, 465; (f) T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger and F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 3094; (g) J. F. Callan, A. P. de Silva and D. C. Magri, Tetrahedron, 2005, 61, 8551; (h) J. Zhao, M. G. Davidson, M. F. Mahon, G. Kociok-Kohn and T. D. James, J. Am. Chem. Soc., 2004, 126, 16179; (i) H. Cao and M. D. Heagy, J. Fluoresc., 2004, 14, 569; (j) R. Martı’nez-Ma’n˜ ez and F. Sancano’ n, Chem. Rev., 2003, 103, 4419; (k) J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003, 42, 5134; (l) P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486; (m) A. P. de Silva, H. Q. N. Gunaratne, T. A. Gunnlaugsson, T. M. Huxley, C. P. McCoy,
J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515; (n) A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302.
(18) U. Pischel, Angew. Chem. Int. Ed., 2007, 46, 4026.
(19) M. Burnworth, S. J. Rowan and C. Weder, Chem.–Eur. J., 2007, 13, 7828.
(20) B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag GmbH, New York, 2001, ch. 10.
(21) J. Chen, F. Zeng, S. Wu, J. Su, Z. Tong, Small, 2009, 5, 970−978.
(22) M. Xu, S. Wu, F. Zeng, C. Yu, Langmuir, 2010, 26, 4529−4534.
(23) C. Li, S. Liu, Chem. Commun., 2012, 48, 3262−3278.
(24) B. Ma, S. Wu, F. Zeng, Y. Luo, J. Zhao, Z. Tong, Nanotechnology, 2010, 21, 195501.
(25) X. Wan, S. Liu, J. Mater. Chem., 2011, 21, 10321−10329.
(26) D. H. Reneker, I. Chun, Nanotechnology, 1996, 7, 216−223.
(27) A. Babel, D. Li, Y. Xia, S. A. Jenekhe, Macromolecules, 2005, 38, 4705−4711.
(28) S. K. Chae, H. Park, J. Yoon, C. H. Lee, D. J. Ahn, J. M. Kim, Adv. Mater., 2007, 19, 521−524.
(29) Kuo, C. C.; Lin, C. H.; Chen, W. C. Macromolecules, 2007, 40, 6959−6966.
(30) Y. S. Huang, C. C. Kuo, Y. C. Shu, S. C. Jang, W. C. Tsen, F. S. Chuang, C. C. Chen, Macromol. Chem. Phys., 2014, 215, 879−887.
(31) C. C. Kuo, Y. C. Tung, W. C. Chen, Macromol. Rapid Commun., 2010, 31,65−70.
(32) Y. C. Chiu, C. C. Kuo, J. C. Hsu, W. C. Chen, ACS Appl. Mater. Interfaces, 2010, 2, 3340−3347.
(33) Y. C. Chiu, Y. Chen, C. C. Kuo, S. H. Tung, T. Kakuchi, W. C. Chen, ACS Appl. Mater. Interfaces, 2012, 4, 3387−3395.
(34) L. N. Chen, Y. C. Chiu, J. J. Hung, C. C. Kuo, W. C. Chen, Macromol. Chem. Phys., 2014, 215, 286−294.
(35) X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, L. A. Samuelson, Nano Lett., 2002, 2, 1273−1275.
(36) W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, M. Sun, Y. Li, J. Hazard. Mater., 2011, 194, 185−192.
(37) J. S. Kim, J. Yoon et al., Chem. Soc. Rev., 2008, 37, 1453–1744.
(38) K.K. Yu, K. Li, J.T. Hou, J. Yang, Y.M. Xi and X.Q. Yu, Polym. Chem., 2014, 5, 5804.
(39) S. L. Deng, T. L. Chen, W. L. Chien, J. L. Hong, J. Mater. Chem. C 2014, 2, 651–659.
(40) J. Madsen, N. J. Warren, and S. P. Armes, Biomacromolecules 2011, 12, 2225–2234
(41) A. Alba, O. T. d. Boullay, B. Martin-Vaca and D. Bourissou, Polym. Chem., 2015,6, 989-997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔