(3.230.173.249) 您好!臺灣時間:2021/04/21 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉俊德
研究生(外文):Chun-Te Yeh
論文名稱:海洋內波紊流特性之觀測:以東沙海域為例
論文名稱(外文):Turbulent properties of oceanic internal waves in the shelves near Dongsha
指導教授:曾若玄曾若玄引用關係
指導教授(外文):Ruo-Shan Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:105
中文關鍵詞:南海內波渦動能消散率消散能量振幅東沙
外文關鍵詞:South China Seadissipated powerdissipation rate of TKEDongshaamplitudeInternal wave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用垂直紊流剖面儀(VMP-250、micro-Rider)、船載式流速儀 ( sb-ADCP ) 以及科學魚探儀分別於2011、2014和2015年的三個航次中觀測南海非線性內波 (Nonlinear Internal wave, NLIW) 的紊流與水文特性,探測海域位於東沙陸棚區域水深250~600公尺,一共觀測到11個內波,每一個內波皆施放2 ~ 6次不等的紊流儀測量海水之渦動能消散率,以了解內波在前端、內部和尾端的紊流分佈。

  在海研一號1082航次,於東沙島東北部陸棚海域水深250公尺處,進行30小時連續內波觀測。研究結果發現,在此30小時期間共有5組下沉型內波群通過本測站,ㄧ個內波群中通常是一個振幅較大、強度較強並且流速較快 (約1.5 m/s) 的內波,伴隨著數個強度較弱、流速較慢 (0.5~ 0.3 m/s) 的內波尾隨在後,整組通過時間從3小時至8小時不等。在一 個內波群中,第一個強度最大的波通常伴隨顯著的前端沉降流與後端湧升流,垂直積分的消散率比後端較弱的內波高出二十餘倍。在海研三號1859的航次也顯示,通常在內波的前端渦動能消散率 (ε) 最小,約10-8 W kg-1,在內波經尾端,ε則會明顯增大至10-6 ~ 10-5 W kg-1。由於下沉型內波造成水團的下沉,使得同一深度的溫度差可達6~12℃,於內波中心處溫度最高,螢光極大值也會隨著水團垂直移動,在內波尾端溫度和螢光值則逐漸回復。在沒有內波經過的海面時,ε約為10-9 ~ 10-8 W kg-1,相當於靜止水面,消散能量約為1.8 mWm-2,是內波尾端的175分之ㄧ。在海研三號1541航次則是發現振幅170公尺的內波,向西傳遞的速度高達2.6 m/s,水平溫度差異達到11℃,而沉降流及湧升流的垂直流速高達0.7 m/s,在內波水團內的混合層深度達到210公尺。
Vertical microstructure profiler (VMP-250 and Microrider), shipboard ADCP, and echo sounder were used to investigate the turbulent characteristics and mixing processes of nonlinear internal waves (NLIW) in the South China Sea during three cruises of 2011, 2014, and 2015. The survey area is in the continental shelves northeast of Dongsha, between isobaths of 250 and 600 m. A total of 11 NLIW were observed, with about two to six VMP profiles were conducted respectively for each NLIW to derive the dissipation rate of turbulent kinetic energy (ε). The purpose of this study is to get a better understanding of turbulence distribution in the fore, middle, and aft parts of NLIW.

During the Cruise 1082 of R/V OR1 in 2014, 30 hours of continuous observations in five clusters of depression NLIW were conducted at a site of 250-m depth. Our results indicate that the first internal wave always has a larger amplitude, propagation speed (~1.5 m/s), and dissipated power, which is followed by several smaller, slower (0.3-0.5 m/s), and weaker internal waves. It took about 3 to 8 hours for the whole wave packet to pass by. The first and the strongest internal wave is usually accompanied by significant down-welling in the fore and upwelling in the aft parts. Vertically integrated dissipation level is about twenty times higher for the first internal wave than that of the following waves. Observations from the Cruise 1859 of OR3 in 2015 also indicate that ε in the fore and aft parts of NLIW is about 10-8 and 10-6~10-5 W/kg, respectively. Values of ε in the quiescent ocean without the disruption of NLIW are about 10-9~10-8 W/kg, and the integrated dissipated level is about 1.8 mWm-2, which is about 1/175 that of the aft part of NLIW. The depression internal waves lead to the sinking of surface waters, so that marked temperature variations of 6~12 oC in the same depth could be observed in a short time as the waves passed by. The water temperature in the core of NLIW is the highest. The depth of maximum chlorophyll concentration also moves downward then upward as the waves passed by. Finally, huge NLIW with an astonishing 170-m amplitude, 2.6 m/s propagation speed, 0.7 m/s vertical velocity, 11oC temperature variation, and 210-m mixed-layer depth were discovered during the Cruise 1541 of OR3 in 2011.
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xiii
一、 前言 1
1-1、關於內波 1
1-2、前人研究 3
1-3、研究動機與目的 7
二、 使用儀器介紹 8
2-1、垂直紊流剖面儀 Vertical Microstructure Profiler ( VMP – 250 ) 8
2-1-1、Shear Probe剪切探針 10
2-2、Self-contained Turbulence Package自記式紊流模組micro-Rider 11
2-2-1、Thermistor熱敏電阻 13
2-3、聲納魚探儀EK-60 13
2-4、船載式都普勒海流儀sb-ADCP 14
三、 資料分析方法 17
3-1、 Dissipation Rate of TKE 渦動能消散率 ε 17
3-2、 Integrated levels of Dissipated Power 消散能量 20
3-3、 Dissipation Rate of Temperature Variance熱變異消散率χ 21
3-4、 VMP與micro-Rider計算方法比較εshear "vs.ε" χ 23
3-5、 三航次概要 25
3-6、 實驗方法 25
四、航次資料呈現 28
4-1、海研三號OR3-1541航次 28
4-2、海研一號OR1-1082航次 42
4-3、海研三號OR3-1859航次 59
4-4、航次總結 77
五、討論與總結 79
5-1、內波中溫度與葉綠素的變化 79
5-2、內波前的沉降流與後端之湧升流 80
5-3、內波群與內波之能量消散 81
5-3-1、單一內波消散能量 81
5-3-2、內波群消散能量比較 82
5-4、總結 84
六、參考文獻 86
汪建君。2013,利用 CTD 搭載紊流儀直接觀測海洋紊流混合。國立中山大學海
下科技暨應用海洋物理研究所碩士論文,共70頁。
邵煥傑、曾若玄。2013,澎湖水道內強烈紊流混合的直接觀測。第35屆海洋工
程研討會論文。
葉俊德、邵煥傑、曾若玄。2014,新型海洋紊流剖面儀的測試與評估。第16屆
水下技術研討論會論文。
戴昌鳳等人。2014,台灣區域海洋學。載於王冑等人,第四章 ( 95-139頁)。台
大出版中心。

Alford, M. H. (2003). Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423(6936), 159-162.
Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., Tang, D., Chang, M. H. (2010). Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6), 1338-1355. doi: 10.1175/2010jpo4388.1
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A., Klymak, J. M.,Tang, D., & Lu, C. W. (2011). Energy flux and dissipation in Luzon Strait: Two tales of two ridges. Journal of Physical Oceanography, 41(11), 2211-2222. doi: 10.1175/jpo-d-11-073.1
Alford, M. H., Mickett, J., Zhang, S., MacCready, P., Zhao, Z., & Newton, J. (2012). Internal waves on the Washington continental shelf. Oceanography, 25(2), 66-79. doi: 10.5670/oceanog.2012.43
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., . . . Tang, T. Y. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65-69. doi: 10.1038/nature14399
Alford, M. H., & Pinkel, R. (2000). Observations of overturning in the thermocline: The context of ocean mixing. Journal of Physical Oceanography, 30(5), 805-832.
Chang, M. H., Lien, R. C., Tang, T. Y., D''Asaro, E. A., & Yang, Y. J. (2006). Energy flux of nonlinear internal waves in northern South China Sea. Geophysical Research Letters, 33(3). doi: 10.1029/2005gl025196
Chen, Y. J., Ko, D. S., & Shaw, P. T. (2013). The generation and propagation of internal solitary waves in the South China Sea. Journal of Geophysical Research: Oceans, 118(12), 6578-6589. doi: 10.1002/2013jc009319
Farmer, D., Alford, M., Lien, R. C., Yang, Y. J., Chang, M. H., & Li, Q. (2011). From Luzon Strait to Dongsha plateau: Stages in the life of an internal wave. Oceanography, 24(4), 64-77. doi: 10.5670/oceanog.2011.95
Goodman, L., Levine, E. R., & Lueck, R. G. (2006). On measuring the terms of the turbulent kinetic energy budget from an AUV. Journal of Atmospheric and Oceanic Technology, 23(7), 977-990.
Guo, C., & Chen, X. (2014). A review of internal solitary wave dynamics in the northern South China Sea. Progress in Oceanography, 121, 7-23. doi: 10.1016/j.pocean.2013.04.002
Johnston, T. M. S., Rudnick, D. L., Alford, M. H., Pickering, A., & Simmons, H. L. (2013). Internal tidal energy fluxes in the South China Sea from density and velocity measurements by gliders. Journal of Geophysical Research: Oceans, 118(8), 3939-3949. doi: 10.1002/jgrc.20311
Kaneko, H., Yasuda, I., Komatsu, K., & Itoh, S. (2012). Observations of the structure of turbulent mixing across the Kuroshio. Geophysical Research Letters, 39(15), L15602. doi: 10.1029/2012gl052419
Klymak, J. M., Alford, M. H., Pinkel, R., Lien, R. C., Yang, Y. J., & Tang, T. Y. (2011). The breaking and scattering of the internal tide on a continental slope. Journal of Physical Oceanography, 41(5), 926-945. doi: 10.1175/2010jpo4500.1
Li, Q., & Farmer, D. M. (2011). The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7), 1345-1363. doi: 10.1175/2011jpo4587.1
Lien, R. C., Tang, T. Y., Chang, M. H., & D''Asaro, E. A. (2005). Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters, 32(5).
Lozovatsky, I., Liu, Z., Fernando, H. J. S., Hu, J., & Wei, H. (2013). The TKE dissipation rate in the northern South China Sea. Ocean Dynamics, 63(11-12), 1189-1201. doi: 10.1007/s10236-013-0656-7
Lueck, R., Wolk, F., & Black, K. (2013). Measuring tidal channel turbulence with a Vertical Microstructure Profiler (VMP). Rockland Scientific International, Partrac Ltd., Technical Note TN-026.
Matt, S., Hou, W., Woods, S., Jarosz, E., Goode, W., & Weidemann, A. (2013). Measurements of turbulent dissipation during the Bahamas optical turbulence experiment. Proc. SPIE 8724, Ocean Sensing and Monitoring V, 872405. doi:10.1117/12.2018303
Melet, A., Hallberg, R., Legg, S., & Polzin, K. (2013). Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43(3), 602-615. doi: 10.1175/jpo-d-12-055.1
Mitchell, J. G., Yamazaki, H., Seuront, L., Wolk, F., & Li, H. (2008). Phytoplankton patch patterns: Seascape anatomy in a turbulent ocean. Journal of Marine Systems, 69(3-4), 247-253. doi: 10.1016/j.jmarsys.2006.01.019
Moum, J., & Nash, J. (2009). Mixing measurements on an equatorial ocean mooring. Journal of Atmospheric and Oceanic Technology, 26(2), 317-336.
Moum, J. N., Klymak, J. M., Nash, J. D., Perlin, A., & Smyth, W. D. (2007). Energy transport by nonlinear internal waves. Journal of Physical Oceanography, 37(7), 1968-1988. doi: 10.1175/jpo3094.1
Nash, J. D., Alford, M. H., & Kunze, E. (2005). Estimating internal wave energy fluxes in the ocean. Journal of Atmospheric and Oceanic Technology, 22(10), 1551-1570.
Nasmyth, P. W. (1970). Oceanic turbulence. (Doctor of Philosophy - PhD), University of British Columbia.
Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1), 83-89.
Osborn, T. R., & Cox, C. S. (1972). Oceanic fine structure. Geophysical & Astrophysical Fluid Dynamics, 3(1), 321-345.
Pinkel, R., Buijsman, M., & Klymak, J. (2012). Breaking topographic lee waves in a tidal channel in Luzon Strait. Oceanography, 25(2), 160-165. doi: 10.5670/oceanog.2012.51
Polzin, K. L. (2009). An abyssal recipe. Ocean Modelling, 30(4), 298-309. doi: 10.1016/j.ocemod.2009.07.006
Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., . . . Yang, Y. J. (2004). Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4), 1157-1181.
Ramp, S. R., Yang, Y. J., & Bahr, F. L. (2010). Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17(5), 481-498. doi: 10.5194/npg-17-481-2010
Simmons, H., Chang, M. H., Chang, Y. T., Chao, S. Y., Fringer, O., Jackson, C., & Ko, D. S. (2011). Modeling and prediction of internal waves in the South China Sea. Oceanography, 24(4), 88-99. doi: 10.5670/oceanog.2011.97
St. Laurent, L., Simmons, H., Tang, T. Y., & Wang, Y. H. (2011). Turbulent properties of internal waves in the South China Sea. Oceanography, 24(4), 78-87. doi: 10.5670/oceanog.2011.96
St. Laurent, L. (2008). Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35(23). doi: 10.1029/2008gl035520
St. Laurent, L., Alford, M. H., & Paluszkiewicz, T. (2012). An introduction to the special issue on internal waves. Oceanography, 25(2), 15-19. doi: 10.5670/oceanog.2012.37
St. Laurent, L., & Garrett, C. (2002). The role of internal tides in mixing the deep ocean. Journal of Physical Oceanography, 32(10), 2882-2899.
Taylor, G. I. (1922). Diffusion by continuous movements. Proc. London Math. Soc, 20(1), 196-212.
Thorpe, S. A. (2007). An introduction to ocean turbulence. Cambrige University Press.
Tian, J., Yang, Q., & Zhao, W. (2009). Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12), 3191-3203. doi: 10.1175/2009jpo3899.1
Wolk, F., Hancyk, J., & Lueck, R. (2012). Turbulence measurements using non-acoustic sensors in a high-flow tidal channel. 1st Asian Wave and Tidal Conference Series.
Yamazaki, H., Mitchell, J. G., Seuront, L., Wolk, F., & Li, H. (2006). Phytoplankton microstructure in fully developed oceanic turbulence. Geophysical Research Letters, 33(1), L01603. doi: 10.1029/2005gl024103
Yang, Q., Tian, J., Zhao, W., Liang, X., & Zhou, L. (2014). Observations of turbulence on the shelf and slope of northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 87, 43-52. doi: 10.1016/j.dsr.2014.02.006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔