(3.236.6.6) 您好!臺灣時間:2021/04/23 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉秀玲
研究生(外文):Hsiu-Ling Liu
論文名稱:水溫對台灣鯉形目魚類鱗片數的影響
論文名稱(外文):The effect of temperature on squamation of Cypriniformes in Taiwan
指導教授:廖德裕
指導教授(外文):Te-Yu Liao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:146
中文關鍵詞:鱗列數水溫爬鰍科(Balitoridae)鯉科(Cyprinidae)
外文關鍵詞:water temperaturesquamationBalitoridaeCyprinidae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
魚類鱗片數可以廣泛地用來作為形態上的描述,或用來作為分類的依據。鱗片數除了會受基因控制外,尚有許多外部因子如溫度、鹽度、光照、汙染,及內部因子如寄生蟲、甲狀腺素分泌量等都會影響鱗片數的變動。溫度是影響魚類鱗片數的外部因子之一,然而有關不同地區間魚類鱗片數差異的統計資料卻闕如。台灣因為地理環境獨特‚在狹小的三百公里範圍內‚密佈著許多條東西向近乎平行的河川,適合做不同水系間魚類鱗片數量差異與水溫關係的比較。本研究共選擇西部10條流域,7種鯉科(Cyprinidae)及2種爬鰍科(Balitoridae)魚類,在每一溪流中,每一種魚選取20尾標本,計算側線鱗、側線上鱗下鱗、前背鱗、圍尾柄鱗、尾鰭鱗等五部位的鱗片數,並與水溫資料作比較。統計結果發現粗首鱲(Opsariichthys pachycephalus)、長鰭鱲(O.evolans)、台灣石魚賓(Acrossocheilus paradoxus)、台灣鏟頜魚(Onychostoma barbatulum)、台灣馬口魚(Candidia barbata)、高身小鰾鮈(Microphysogobio alticorpus)、短吻小鰾鮈(M.brevirostris)、台灣間爬岩鰍(Hemimyzon formosanum)纓口台鰍(Formosania lacustre)等的側線鱗數在各流域間存在差異性(p<0.05)。除了長鰭鱲外,其他8種魚類側線鱗數與水溫間皆達顯著負相關(p<0.01)。一般而言,在適度的範圍內,溫度越高魚類的成長發育速度會較快。在水溫較高的環境中,鱗片會提前發育,鱗片發育階段時的體長較短,鱗片數因而比較少。本研究結果顯示,將側線鱗數按照各流域緯度由高至低排列,除了高身小鰾鮈、短吻小鰾鮈及石魚賓外,其餘6物種的側線鱗數在各流域間會有部分不重疊分布的情形。種內側線鱗數會在小地理範圍內即產生不連續性的差異。當要以側線鱗數作為分類特徵時,應多留意水溫變動對側線鱗數所造成的影響。
關鍵字:鯉科(Cyprinidae)、爬鰍科(Balitoridae)、鱗列數、水溫
Scales are countable traits and widely used as morphological descriptions of fishes and as characteristics to distinguish different species. There is no doubt that differences of squamation can have a genetic cause. Because squamation occurs late in ontogeny, some external factors such as water temperature, salinity, industrial pollution,
illumination and internal factors such as thyroid hormones, and parasitism can contribute to the variation of squamation. Water temperature is one of the factors that may influence squamation. However, the variation of squamation between different rivers is hardly studied. Taiwan encompasses the unique geographical environment densely covered with parallel rivers within three hundred kilometers in narrow range, rendering Taiwan an ideal location to compare the relationship of squamation to temperature among different rivers in Taiwan. Seven cyprinids and two balitorids were collected from ten rivers,including their entire or major distribution range. Lateral line scales, transverse scales, predorsal scales, caudal peduncle scales, caudal fin scales of twenty specimens of each species from each river were counted. Correlation between water temperature and squamation was analysed using the Pearson product-moment correlation coefficient(SPSS statistics). Statistical results show that numbers of lateral line scales of Opsariichthys pachycephalus, O. evolans, Acrossocheilus paradoxus, Onychostoma barbatulum, Candidia barbata, Microphysogobio alticorpus, M.brevirostris, Hemimyzon formosanum, Formosania lacustre are significantly different among rivers(p<0.05). Except for O. evolans, numbers of laternal line scales of the other eight species are negatively correlated(p<0.01). It is hypothesized that fish scales develop faster in higher temperature and fishes start to squamate at earlier developmental stage with smaller body size. Given the same scale size, shorter body length would accommodate less scales and this would result in a negative correlation between scale number and temperature. Except for M. alticorpus, M. brevirostris and A. paradoxus, the other six species show discontinuous scale number among rivers. This implies that each of these six species may be split into more species if limited populations are examined. The present study show that laternal line scale number varies with water temperature. When lateral line scale number is used as diagnosis for new species, the interrelationship of scale number to water temperature must be taken into consideration.
Keyword: Cyprinidae, Balitoridae, squamation, water temperature
論文審定書.....................................................................................................................i
論文公開授權書..............................................................................................................ii
謝辭................................................................................................................................iii
中文摘要....................................................................................................................... iv
英文摘要........................................................................................................................vi
目錄.............................................................................................................................. viii
圖目錄........................................................................................................................... ix
表目錄........................................................................................................................... x
附錄............................................................................................................................... xi
壹、前言........................................................................................................................1
貳、材料與方法.............................................................................................................6
参、結果........................................................................................................................9
肆、討論.......................................................................................................................17
伍、結論.......................................................................................................................22
參考文獻.......................................................................................................................23
附圖..............................................................................................................................28
附表..............................................................................................................................30
附錄..............................................................................................................................92
林浩然,2011.魚類生理學.中山大學出版社.廣州.中國。
陳宜瑜等,1998.中國動物志硬骨魚綱鯉形目(中卷).科學出版社.北京.中國。
廖德裕,2000.台灣產埔里華吸鰍族群間分子親緣關係之研究,國立清華大學生命科學系研究所。
蔡慧君、胡燕君,2005.魚鱗的完全利用.水試專訓第12期。
Angilletta, M. J., T. D. Steury, and M. W. Sears. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology 44(6):498-509.
Atkinson,D.1994.Temperature and organism size-a biological law for ectotherms?
Advances in ecological research 25 (1994): 1-1.
Barlow, C., M. Pearce, L. Rodgers, and P. Clayton. 1995. Effects of photoperiod on growth, survival and feeding periodicity of larval and juvenile barramund(Lates calcarifer). Aquaculture 138(1):159-168.
Belk, M. C., and D. D. Houston. 2002. Bergmann’s rule in ectotherms: a test using freshwater fishes. The American Naturalist 160(6):803-808.
Bergmann, C. 1848. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse.
Bickford, D., Howard, S. D., Ng, D. J., & Sheridan, J. A. 2010. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodiversity and conservation, 19(4), 1043-1062.
Boeuf, G., and P. Payan. 2001. How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 130(4):411-423.
Brown, D. D. 1997. The role of thyroid hormone in zebrafish and axolotl development. Proceedings of the National Academy of Sciences 94(24):13011-13016.
Bullock, T. H. 1955. Compensation for temperature in the metabolism and activity of poikilotherms. Biological Reviews 30(3):311-342.
Campana, S. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of fish biology 59(2):197-242.
Canagaratnam, P. 1959. The influence of light intensities and durations during early development on meristic variation in some salmonids.
Carmichael, G. J. 1983. Scale-number differences of central stonerollers incubated and reared at different temperatures. Transactions of the American Fisheries Society 112(3):441-444.
Dannevig, A. 1950. The influence of the environment on number of vertebrae in plaice.
Dentry, W., and C. Lindsey. 1978. Vertebral variation in zebrafish (Brachydanio rerio) related to the prefertilization temperature history of their parents. Canadian Journal of Zoology 56(2):280-283.
Eales, J., J. Chang, G. Van Der Kraak, R. Omeljaniuk, and L. Uin. 1982. Effects of temperature on plasma thyroxine and lodide kinetics in rainbow trout, Salmo gairdneri. General and comparative endocrinology 47(3):295-307.
Fagerlund, U., J. McBride, and E. Stone. 1981. Stress-related effects of hatchery rearing density on coho salmon. Transactions of the American Fisheries Society 110(5):644-649.
Fahy, W. 1980. The influence of temperature change on number of dorsal fin rays developing in Fundulus majalis (Walbaum). Journal du Conseil 39(1):104-109.
Fowler, J. A. 1970. Control of vertebral number in teleosts-an embryological problem. Quarterly Review of Biology:148-167.
Gabriel, M. L. 1944. Factors affecting the number and form of vertebrae in Fundulus heteroclitus. Journal of Experimental Zoology 95(1):105-147.
Garside, E. 1966. Developmental rate and vertebral number in salmonids. Journal of the Fisheries Board of Canada 23(10):1537-1551.
Ginés, R., J. M. Afonso, A. Argüello, M. J. Zamorano, and J. L. López. 2004. The effects of long‐day photoperiod on growth, body composition and skin colour in immature gilthead sea bream (Sparus aurata L.). Aquaculture Research 35(13):1207-1212.
Gray, J. 1928. The growth of fish. Journal of experimental biology 6(2):110-124.
Green, B. S., and R. Fisher. 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. Journal of Experimental Marine Biology and Ecology 299(1):115-132.
Hubbs, C. L. 1922. Variations in the number of vertebrae and other meristic characters of fishes correlated with the temperature of water during development. American Naturalist 56(645):360-372.
Hubbs, C. L. 1927. The related effects of a parasite on a fish: a retardation of early growth, the retention of larval characters and an increase in the number of scales. The Journal of Parasitology 14(2):75-84.
Jordan, D. S. 1892. Relations of temperature to vertebrae among fishes. Proc. U.S. Natl. Mus. for 1981 (1982) 14:107-120.
Jørgensen, E. H., J. S. Christiansen, and M. Jobling. 1993. Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus). Aquaculture 110(2):191-204.
Jonsson, B., S. Brockmark, and J. I. Johnsson. 2010. Reduced hatchery rearing density increases social dominance, postrelease growth, and survival in brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 67(2):288-295.
Kwain, W.-H. 1975. Embryonic development, early growth, and meristic variation in rainbow trout (Salmo gairdneri) exposed to combinations of light intensity and temperature. Journal of the Fisheries Board of Canada 32(3):397-402.
Leary, R. F., F. W. Allendorf, and K. L. Knudsen. 1991. Effects of rearing density on meristics and developmental stability of rainbow trout. Copeia:44-49.
Levin, B. 2010. Drastic shift in the number of lateral line scales in the common roach Rutilus rutilus as a result of heterochronies: experimental data. Journal of Applied Ichthyology 26(2):303-306.
Levin, B. 2011. Ontogenetic causes and mechanisms for formation of differences in number of fish scales. Russian Journal of Developmental Biology 42(3):186-191.
Levin, B., A. Bolotovskiy, and M. Levina. 2012. Body size determines the number of scales in cyprinid fishes as inferred from hormonal manipulation of developmental rate. Journal of Applied Ichthyology 28(3):393-397.
Liao, T.-Y., and H. H. Tan. 2011. Brevibora cheeya, a new species of cyprinid fish from Malay Peninsula and Sumatra. The Raffles Bulletin of Zoology 59(1):77-82.
Lindsey, C. 1954. TEMPERATURE-CONTROLLED MERISTIC VARIATION IN THE PARADISE FISH MACROPODUS OPERCULARS (L.). Canadian Journal of Zoology 32(2):87-98.
Lindsey, C. 1962. Observations on meristic variation in ninespine sticklebacks, Pungitius pungitius, reared at different temperatures. Canadian Journal of Zoology 40(7):1237-1247.
Lindsey, C. 1988. Factors controlling meristic variation. Fish physiology 11(part B):197-274.
Lindsey, C., and M. Ali. 1965. The effect of alternating temperature on vertebral count in the medaka (Oryzias latipes). Canadian Journal of Zoology 43(1):99-104.
MacCrimmon, H., and W.-H. Kwain. 1969. Influence of light on early development and meristic characters in the rainbow trout, Salmo gairdneri Richardson. Canadian Journal of Zoology 47(4):631-637.
McDowall R.M. 2008 Jordan’s and other ecogeographical rules, and the vertebral number in fishes. Journal of Biogeography 35(3):501-508
Mottley, C. M. 1933. The effect of temperature during development on the number of scales in the Kamloops trout, Salmo kamloops Jordan. Contributions to Canadian Biology and Fisheries 8(1):253-263.
Nicieza, A. G., and N. B. Metcalfe. 1997. Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability. Ecology 78(8):2385-2400.
Nytrø, A. V.,Vikingstad E.,Foss A.,and Hangstad TA., 2014. The effect of temperature and fish size on growth of juvenile lumpfish (Cyclopterus lumpus L.). Aquaculture 434:296-302.
Otterlei, E., G. Nyhammer, A. Folkvord, and S. O. Stefansson. 1999. Temperature-and size-dependent growth of larval and early juvenile Atlantic cod (Gadus morhua): a comparative study of Norwegian coastal cod and northeast Arctic cod. Canadian Journal of Fisheries and Aquatic Sciences 56(11):2099-2111.
Parker, S. J., and J. L. Specker. 1990. Salinity and temperature effects on whole-animal thyroid hormone levels in larval and juvenile striped bass, Morone saxatilis. Fish Physiology and Biochemistry 8(6):507-514.
Peterson, M. S., B. H. Comyns, C. F. Rakocinski, and G. L. Fulling. 1999. Does salinity affect somatic growth in early juvenile Atlantic croaker,(Micropogonias undulatus)Journal of Experimental Marine Biology and Ecology 238(2):199-207.
Russell, N., J. Fish, and R. Wootton. 1996. Feeding and growth of juvenile sea bass: the effect of ration and temperature on growth rate and efficiency. Journal of fish biology 49(2):206-220.
Schreck, C. B., R. Patino, C. K. Pring, J. R. Winton, and J. E. Holway. 1985. Effects of rearing density on indices of smoltification and performance of coho salmon, Oncorhynchus kisutch. Aquaculture 45(1):345-358.
Sfakianakis, D. G., I. Leris, A. Laggis, and M. Kentouri. 2011. The effect of rearing temperature on body shape and meristic characters in zebrafish (Danio rerio) juveniles. Environmental Biology of Fishes 92(2):197-205.
Shkil, F., V. Borisov, B. Abdissa, and S. Smirnov. 2010a. Role of thyroid hormone in the ontogeny and morphological diversification of Barbus intermedius sensu Banister, 1973 of Lake Tana in Ethiopia. Russian Journal of Developmental Biology 41(6):369-380.
Shkil, F., B. Levin, B. Abdissa, and S. Smirnov. 2010b. Variability in the number of tooth rows in the pharyngeal dentition of Barbus intermedius (Teleostei; Cyprinidae): genetic, hormonal and environmental factors. Journal of Applied Ichthyology 26(2):315-319.
Sire, J. Y., F. Allizard, O. Babiar, J. Bourguignon, and A. quilhac. 1997. Scale development in zebrafish (Danio rerio). Journal of Anatomy 190(4):545-561.
Sun, L., and H. Chen. 2014. Effects of water temperature and fish size on growth and bioenergetics of cobia (Rachycentron canadum). Aquaculture 426:172-180.
Swain, D., and C. Lindsey. 1986. Meristic variation in a clone of the cyprinodont fish Rivulus marmoratus related to temperature history of the parents and of the embryos. Canadian Journal of Zoology 64(7):1444-1455.
Taning, Å. V. 1952. Experimental study of meristic characters in fishes. Biological Reviews 27(2):169-193.
Wang, C. F., C. H. Hsieh, S. C. Lee, and H. Y. Wang. 2011. Systematics and phylogeography of the Taiwanese endemic minnow Candidia barbatus (Pisces: Cyprinidae) based on DNA sequence, allozymic, and morphological analyses. Zoological Journal of the Linnean Society 161(3):613-632.
Weisel, G. F. 1955. Variations in the number of fin rays of two cyprinid fishes correlated with natural water temperatures. Ecology36(1):1-6.
Wen, W., X. Huang, Q. Chen, L. Feng, and L. Wei. 2013. Temperature effects on early development and biochemical dynamics of a marine fish, Inimicus japonicus. Journal of Experimental Marine Biology and Ecology 442:22-29.
Yamano, K. 2005. The role of thyroid hormone in fish development with reference to aquaculture. Japan Agricultural Research Quarterly 39(3):161.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔