(3.236.231.14) 您好!臺灣時間:2021/04/11 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林紀妏
研究生(外文):Ji-Wen Lin
論文名稱:耐鹽性植物應用於人工浮島系統處理高鹽度廢水之研究
論文名稱(外文):Effect of the artificial floating island with salt tolerant plants on the treatments of wastewater with high salinity
指導教授:楊磊楊磊引用關係
指導教授(外文):Lei Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:126
中文關鍵詞:濱水菜人工浮島鹹水型濕地硝化速率鹽定
外文關鍵詞:hydraulic retention time.emerged plantssalt tolerant plantsartificial floating islandnitrification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
此實驗目的為評估人工浮島放置於鹹水型濕地的去除情況,使用的植物為濱水菜(Sesuvium portulacastrum (L.) L. )和鹽定(Suaeda nudiflora (Willd.) Moq.)兩種,以少量土壤種植於浮島載體上,使其根部直接進泡於水體,並以連續流方式進行實驗,過程中以崎峰濕地做為水樣配製方向與預期達到成效的對象。進一步針對浮島植物在不同氨氮濃度的水體下,其去除效果的變化,與實場之水力停留時間的差異對植物的削減影響進行研究。
實驗發現浮島植物可以有效的提升水體硝化速率,氨氮削減量為無植物組的最少1.4倍,總氮則有59.5~66.1%和35.7~45.7%的高去除率。當氨氮濃度提高時,植物對硝化作用的強化更明顯,氨氮去除率最少分別提升38.4%(7 mg/L)、44.1%(17 mg/L)、29.0%(35 mg/L),甚至氨氮35 mg/L時,空白(BK)與對照(CK)組都沒有氨氮的消耗,而植物浮島依然對氨氮、總凱氏氮和總氮保持著明顯的去除效果。此外,從整體營養鹽削減瞭解,最佳的水力停留時間為3天>5天>1天,過長的水力停留時間會出現回朔現象,造成生化需氧量去除率降低,而水力停留時間如果過短,則不利於植物浮島對水體營養鹽的吸收與應用,需視濕地的不同目的、調整不同的停留時間,且定時的進行疏伐增長的植物體,以達成所需要的效果才是最佳的方案。在大部分實驗均發現,浮島植物能有效的減緩藻類量增加。採取濕地水體之實驗結果顯示,無植物組之葉綠素a增加最少6.61 mg/day-m3,而濱水菜僅增加2.63 mg/day-m3,鹽定與混合則分別削減6.37 mg/day-m3和6.45 mg/day-m3,此結果表示浮島植物不僅可以輔助鹹水型濕地削減營養鹽,對於藻類增加導致水體惡化亦有預防的效果。
For understanding the effect of the artificial floating island which was placed on the water surface in the saltwater type constructed wetland, on the treatment of wastewater experiment was designed to have some salt tolerant plants cultivated on the artificial floating islands, which was selected for common aquatic plant species including: two emerged plants (Sesuvium portulacastrum (L.) L.and Suaeda nudiflora (Willd.) Moq).
Five treatment systems were put in parallel, one was without the plant and floating island (BK), another was placed the floating island without the plant (CK), another was consisted of the populations of S. portulacastrum (L.) L. (100% S.p.), another was consisted of the populations of S. nudiflora (Willd.) Moq (100% S.n.), and the other was consisted of the populations of 50% S. portulacastrum (L.) L. with S. nudiflora (Willd.) Moq.
The experiment facilities were simulated to constructed wetland and applied continuous flow with the artificial seawater preparation which was added to some enough levels of nutrient. The goal is to mimic Qifeng Constructed Wetland, for that we to wish place the floating island in the wetland to mitigate the nutrient load.
This study showed that the rate of nitrification of the plant-group was increased more significantly than those for non-plant groups, in which these content of nitrogen was found obviously lower (86.1~95%&88~99.4%). Likewise, total nitrogen and nitrate content in the plant-groups still kept reducing.
However, when the ammonia nitrogen of the water was increased, the rate of nitrification in the non-plant groups was presented slow down, and as the ammonia nitrogen was raised, the reduced content of nitrogen was become less and less. On the contrary, the plant-group was found having high removal efficiency in these experiment. The data indicated that artificial island with plants could strengthen the rate of nitrification, and assist the constructed wetlands for nitrogen removal.
Additionally, the different of hydraulic retention time (HRT) in the constructed wetland systems had an effect on removal efficiency of the floating island. When extending, feedback effect was occurred in the system that could deterioration water quality. But shortening, the nutrient couldn’t be removed from the wastewater.
Therefore, for different treatment goal, the constructed wetland is needed to get a suitable HRT, while regularly thinning of plants on the artificial floating island, could be efficient to increase removal efficiency of the nutrient.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
表目錄 ix
圖目錄 x
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 濕地介紹 3
2.1.1 濕地定義與價值 3
2.1.2 人工濕地類型的區分 5
2.2 濕地植物之介紹與功能 8
2.3 人工濕地的水質淨化機制 9
2.3.1 有機化合物(Organic matter)的去除 11
2.3.2 氮(Nitrogen)的去除 12
2.3.3 磷(phosphorus)的去除 14
2.4 人工浮島(Artificial Floating Island, AFI) 16
2.4.1 人工浮島的功能 16
2.4.2 人工浮島類型區分 17
2.4.3 人工浮島的案例詳述 19
2.5 研究區域介紹 23
2.5.1 基本背景 23
2.5.2 關於崎峰人工濕地 24
2.5.3 崎峰人工濕地水質分析資料 25
第三章 材料與方法 29
3.1 研究流程概述 29
3.2 實驗材料 31
3.2.1 人工浮島栽種之植物選擇 31
3.2.3 實驗用之人工浮島與模槽 33
3.3 實驗內容設計 34
3.3.1 植物浮島放置對去除率影響 35
3.3.2 水力停留時間(hydraulic retention time, HRT)的影響 37
3.4 實驗水樣配製 38
3.5 採樣與分析方法 39
3.5.1 採樣與保存 39
3.5.2 水質分析與方法 39
第四章 結果與討論 41
4.1 植物浮島的去除效果 41
4.1.1 配製具有濃度的人工海水 41
4.1.2 採取濕地水體 46
4.1.3 綜合討論 51
4.2 高濃度氨氮水體之浮島實驗 52
4.2.1 7 mg/L氨氮配製實驗 53
4.2.2 17 mg/L氨氮配製實驗 58
4.2.3 35 mg/L氨氮配製實驗 63
4.2.4 高氨氮濃度實驗之綜合比較 68
4.3 水力停留時間(HRT)對浮島植物的影響 71
4.3.1 5天水力停留實驗 71
4.3.2 3天水力停留實驗 76
4.3.3 1天水力停留實驗 80
4.3.4 水力停留時間之綜合討論 84
第五章 結論與建議 87
5.1 結論 87
5.2 建議 89
參考文獻 90
英文文獻 90
中文文獻 92
網頁資訊 93
附件一 實驗進行情況 94
附件二 實驗監測數據 97
英文文獻
Burke, D.G., Meyers E.J.,and Tiner R.W. 1998. Protecting Nontidal Wetland, pp.1-14.

Cooper, P.F., job, G.D., Green, M.B. and Shutes, R.B.E. 1996. Reed beds and constructed wetlands for wastewater treatment. Medmenham, Marlow, UK: WRc Publishers.

Deun, Rob Van. 2013. Presentation:Introduction Construction Wetland Techology﹝Abstract﹞. Dissemination of the sustainable wastewater technology of construct wetlands in Tanzania(p4-18). Dar Es Salaam, Anzania: VLIR-UOS South.

D’Angelo, E.M. and Reddy, K.R. 1994. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water:I. Distribution of dissolved nutrients in the soil and water column. J. Environ. Qual. vol. 23, pp 928-936.

Faulkner, S. P. and Richard, C. J. (1989). Physical and chemical characteristics of freshwater wetland soil.Chapter 4, pp41-72. in D. A. Hammer (Ed.), Constructed Wetlands for Wastewater Treatment : Municipal, Industrial and Agricultural. Chelsea, Mich: Lewis Publishers.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Englewood Cliffs, N.J.: Prentice Hall.

Hammer, D. A. and Bastian, R. K. 1989. Wetlands Ecosystem: Natural Water Purifiers? Chapter 2, pp5-19. in D. A. Hammer (Ed.), Constructed Wetlands for Wastewater Treatment : Municipal, Industrial and Agricultural. Chelsea, Mich: Lewis Publishers.

Hauck, R.D. 1984. Atmospheric nitrogen chemistry, nitrification, denitrification, and their relationships. In The handbook of environmental chemistry (ed. O. Hutzinger), vol. 1, part C (The natural environment and biogeochemical cycles),pp.105-127. Berlin, Germany:Springer-Verlag.

Kadlec, R. H. and Knight, R. L. 1996. TREATMENT WETLANDS. Michigan:Lewis Publisher,pp55-61.
Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands. Third Edition. Canada. John Wiley and Sons, Inc. pp171-185.

Reddy, K.R. and E.M. D’Angelo. 1994. Soil processes regulation water quality in wetlands. In W. Mitsch, ed. Global Wetlands: Old World and New. Elsevier, Amsterdam. pp. 309-324.

Reddy, K. R., and D. A. Graetz. 1988. Carbon and nitrogen dynamics in wetland soils. In D. D. Hook, W. H. McKee, Jr., H. K. Smith, J. Gregory, V. G. Burrell, M. R., DeVoe, R. E. Sojka, S. Gilbert, R. Banks, L. G. Stolzy, C. Brooks, T. D. Matthews, and T. H. Shear, eds. The Ecology and Management of Wetlands, vol. 1: The Ecology of Wetlands. Timber Press, Portland, OR, pp. 307-318.

Rojas, A., Hernandez, L., Rogeho, P. M., Mata, R., 1992. Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. Journal of Ethnopharmacology 35, 127-149.

The International Water Association [IWA]. 2000. Constructed Wetlands For Pollution Control: Processes, Performance, Design And Operation. Scientific and Technical Report. (no.8). London: IWA publisher.

Vymazal, J. 1997. Subsurface horizontal-flow constructed wetlands for wastewater treatment – the Czech experience. Wetlands Ecol. Mgmt 4, 199-206.

Watson, J. A., Reed, S. C., Kadlec, R. H., Knight, R. L. and Whitehouse, A. E. 1989. Performance Expectations and Loadind Rates for Constructed Wetlands.Chapter 27, pp319-351. in D. A. Hammer (Ed.), Constructed Wetlands for Wastewater Treatment : Municipal, Industrial and Agricultural. Chelsea, Mich: Lewis Publishers.

Wallace, W. and D.J. Nicholas. 1969. Glutamate dehydrogenase in Nitrosomonas europaea and the effect of hydroxylamine, oximes and related compounds on its activity. Biochim.Biophys. Acta171:229-237.

Zhu, T. and Sikora, F. J. 1995. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands, Wat. Sci. Tech, Vol.32, no.3,pp 219-228.

Nakamura, K., Tsukidate M., Shimatani Y., 1996. Characteristic of Ecosystem of an Artificial Vegetated Floating Island. Ecosystem and Sustainable Development, U.K, pp. 171-182.
中文文獻
黃志豪(2013),「人工浮島於鹽沼型人工濕地對水質淨化效果之研究」,國立中山大學海洋環境及工程碩士論文。
石栢岡、張文亮(2006)。水生植物在人工浮島生長狀況與水質淨化之分析。中華民國環境保護學會學刊,29(2)。
鄭銘日(2006), 「日月潭人工浮島設置之效益評估與可行性研究」,逢甲大學環境工程與科學碩士論文。
劉靜靜(1995),「台灣海岸濕地保護策略與法制之研究」,國立中山大學海洋環境及工程碩士論文。
于立平(1997),「濕地公園規劃之策略之研究-以高雄縣鳥松濕地公園」
為例,國立中山大學海洋環境及工程碩士論文。
邱文彥(2003)。海岸管理:理論與實務。台北:五南圖書出版公司印行 (二版)。
羅瑋琪(2002),「以人工濕地處理煉油及煉鋼廢水之研究」,國立中山大學海洋環境及工程碩士論文。
歐文生(2005),「生活污水應用人工濕地處理及再利用之研究」,國立成功大學建築學博士論文。
江純安(2013),「紅樹林於鹹水型人工濕地對污染物去除效率之研究」,國立中山大學海洋環境及工程碩士論文。
林欣怡(2000),「以礫石床人工溼地處理工業廢水之研究」,國立中山大學海洋環境及工程碩士論文。
黃凌風(2010),「廈門市篔簹湖濕地鹹水型人工浮島之應用」,海峽兩岸人工濕地論壇。
林俞辛(2015),「垂直流人工濕地模槽系統中厭氧氨氧化作用之可行性分析」,國立中山大學海洋環境及工程碩士論文。
李明達(2002),「以生態工法整治污染湖泊之規劃研究」,國立中山大學海洋環境及工程碩士論文。
中村圭吾、森川敏成、島谷幸宏,「河口設置人工湖內之湖之污濁負荷制御」,2001。
陳珍瑩(2012),101年度人工濕地水質調查及水質改善策略,交通部觀光局大鵬灣國家風景區管理處,pp43-109。
江漢全、戴文堅 (2008)。人工浮島對湖泊水質改善效益評估之分析。農業工程學報,54(1)。
網頁資訊
行政院內政部營建署,2015/11/30。濕地法草案總說明。
http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=16504&Itemid=57
行政院農委會水保局,2015/05/20。農村社區生態環境營造知識平台-水池/生態池/濱水帶。http://ruralecology.swcb.gov.tw/Sys/GE-PoolSort.html
台灣濕地保護聯盟,2013/01/13.概說濕地─ 濕地的定義與分類。
http://www.wetland.org.tw/about/hope/hope58/5815.html
美國海洋生物實驗室(The Marine Biological Laboratory, MBL),2013/11/06. 人工海水配方。
http://hermes.mbl.edu/BiologicalBulletin/COMPENDIUM/Comp-App1.html
杭州西湖風景名勝區管理委員會,2011/07/29。赴廈門篔簹湖管理中心交流有感。http://www.hzwestlake.gov.cn/Html/201107/29/26165.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔