(3.235.25.169) 您好!臺灣時間:2021/04/20 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王士維
研究生(外文):Shih-Wei Wang
論文名稱:應用於無線區域網路負載平衡之高效率複合式演算法
論文名稱(外文):An Efficient Hybrid Algorithm for WLAN Load Balancing
指導教授:江明朝
指導教授(外文):Ming-Chao Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:單目標函式最佳化負載平衡無線區域網路基因演算法
外文關鍵詞:genetic algorithmWLANsingle-objective function optimizationload balance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於 IEEE 802.11 的無線區域網路 (Wireless Lacal Area Network, WLAN)已被廣泛
應用於日常生活之中,而無線基地台 (Access Point, AP)的負載量會影響無線區域網路
的效能,因此需要一種機制來控制無線基地台之間的負載量,用以提昇整體網路效能
與可靠度。本文提出以多重搜尋多重起點為架構,微型基因演算法為基礎的複合式演
算法,用來運算一個固定範圍內所有使用者與所有無線基地台之間最佳的連線狀態。
最終的實驗結果顯示,我們提出的方法可綜合原始基因演算法與微型基因演算法的優
點,提昇解的品質但是保有計算時間上的優勢。
Wireless local area network (WLAN) based on IEEE 802.11 standards has been widely
used for mobile devices to access the Internet today; however, the load of access point (AP)
may significantly impact the performance of a WLAN. That is why an effective mechanism
is needed to balance the load of APs—so as to avoid the congestion problem of WLANs—to
maximize the performance of all the clients. To improve the performance, and the scalability,
of WLANs, a modified multiple-search multi-start framework for the micro-genetic algorithm
(micro-GA) to decide the connection state of each client is presented in this thesis. Simulation
results show that the proposed algorithm outperforms GA and micro-GA in terms of both the
computation time and the quality
論文審定書 i
誌謝 iii
摘要 iv
Abstract v
List of Figures viii
List of Tables x
Chapter 1 簡介 1
1.1 動機 2
1.2 論文貢獻 3
1.3 論文架構 3
Chapter 2 相關文獻探討 4
2.1 無線區域網路負載平衡 4
2.2 基因演算法與無線區域網路負載平衡的應用 7
2.3 結論 10
Chapter 3 改良式多重起點之多重搜尋架構應用於微型基因演算法 11
3.1 問題定義 11
3.2 演算法流程 13
3.2.1 多重起點之多重搜尋架構 14
3.2.2 改良式多重起點之多重搜尋架構應用於微型基因演算法 15
3.2.3 結論 16
3.3 範例 17
Chapter 4 實驗結果 19
4.1 執行環境、參數設定 19
4.2 數據分析 20
4.2.1 實驗資料 20
4.2.2 結果與時間分析 20
4.2.3 負載平衡分析 22
4.2.4 參數分析 23
4.2.4.1 候選池使用率測試及分析 24
4.2.4.2 解集合數量測試及分析 24
4.2.4.3 收斂參數測試及分析 27
4.2.5 原始 MSMS 與改良式 MSMS 應用於微型基因演算法測試與實驗分析 28
4.2.5.1 實驗資料 28
4.2.5.2 原始 MSMS 與改良 MSMS 版本介紹 28
4.3 總結 32
Chapter 5 結論與未來展望 33
5.1 結論 33
5.2 未來展望 33
Bibliography 35
[1] T. Halonen, J. Romero, and J. Melero, GSM, GPRS and EDGE performance: evolution towards 3G/UMTS. John Wiley & Sons, 2004.
[2] S. Sesia, I. Toufik, and M. Baker, LTE: The UMTS long term evolution. Wiley Online Library, 2009.
[3] A. Salkintzis, “Interworking techniques and architectures for WLAN/3G integration toward 4G mobile data networks,” IEEE Wireless Communications, vol. 11, no. 3, pp. 50–61, 2004.
[4] E. Garcia Villegas, R. Vidal Ferre, and J. Paradells Aspas, “Load balancing in WLANs through IEEE 802.11k mechanisms,” in Proceedings of the 11th IEEE Symposium on Computers and Communications, 2006, pp. 844–850.
[5] L. F. M. de Moraes and B. A. A. Nunes, “Calibration-free WLAN location system based on dynamic mapping of signal strength,” in Proceedings of the 4th ACM International Workshop on Mobility Management and Wireless Access, 2006, pp. 92–99.
[6] W. Song, W. Zhuang, and Y. Cheng, “Load balancing for cellular/WLAN integrated networks,” IEEE Network, vol. 21, no. 1, pp. 27–33, 2007.
[7] J. Xie and I. Howitt, “Multi-domain WLAN load balancing in WLAN/WPAN interference environments,” IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4884–4894, 2009.
[8] L. Li, X. Hu, K. Chen, and K. He, “The applications of WiFi-based wireless sensor network in internet of things and smart grid,” in Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications, 2011, pp. 789–793.
[9] M. Ha, S. H. Kim, H. Kim, K. Kwon, N. Giang, and D. Kim, “SNAIL gateway: Dualmode wireless access points for WiFi and IP-based wireless sensor networks in the internet of things,” in Proceedings of the IEEE Consumer Communications and Networking Conference, 2012, pp. 169–173.
[10] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A software defined networking architecture for the internet-of-things,” in Proceedings of the IEEE Network Operations and Management Symposium, 2014, pp. 1–9.
[11] N. Gozuacik and S. Oktug, “Parent-aware routing for iot networks,” in Proceedings of the Internet of Things, Smart Spaces, and Next Generation Networks and Systems, 2015, vol.9247, pp. 23–33.
[12] ZyWALL, “Zywall usg support notes,” Accessed on Fabruary 15, 2016. [Online]. Available: ftp://ftp.zyxel.com/ZyWALL USG 20/support note/ZyWALLUSG20 2.pdf
[13] Cisco, “Cisco ace 4710 application control engine,” Accessed on Fabruary 15, 2016. [Online]. Available:http://www.cisco.com/c/en/us/products/collateral/application-networking-services/ace-4710-application-control-engine/Data Sheet Cisco ACE 4710.pdf
[14] Y. Bejerano, S. J. Han, and L. E. Li, “Fairness and load balancing in wireless LANs using association control,” in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, 2004, pp. 315–329.
[15] I. Papanikos and M. Logothetis, “A study on dynamic load balance for IEEE 802.11b wireless LAN,” in Proceedings of the 8th International Conference on Advances in Communication and Control Systems, vol. 2001, 2001.
[16] Y. Fukuda, T. Abe, and Y. Oie, “Decentralized access point selection architecture for wireless LANs,” in Proceedings of the Wireless Telecommunications Symposium, 2004, pp. 137–145.
[17] T. Scully and K. N. Brown, “Wireless LAN load balancing with genetic algorithms,”Knowledge-Based Systems, vol. 22, no. 7, pp. 529–534, 2009.
[18] H. Velayos, V. Aleo, and G. Karlsson, “Load balancing in overlapping wireless LAN cells,” in Proceedings of the IEEE International Conference on Communications, vol. 7, 2004, pp. 3833–3836.
[19] J. K. Chen, T. S. Rappaport, and G. de Veciana, “Iterative water-filling for load-balancing in wireless LAN or microcellular networks,” in Proceedings of the IEEE 63rd Vehicular Technology Conference, vol. 1, 2006, pp. 117–121.
[20] M. Buddhikot, G. Chandranmenon, S. Han, Y. W. Lee, S. Miller, and L. Salgarelli, “Integration of 802.11 and third-generation wireless data networks,” in Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 1, 2003, pp. 503–512.
[21] S. Wang, J. Huang, X. Cheng, and B. Chen, “Coverage adjustment for load balancing with an AP service availability guarantee in WLANs,” Wireless Networks, vol. 20, no. 3, pp. 475–491, 2014.
[22] M. Magazine and O. Oguz, “A heuristic algorithm for the multidimensional zero-one knapsack problem,” European Journal of Operational Research, vol. 16, no. 3, pp. 319 – 326, 1984.
[23] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp. 498–516, 1973.
[24] P. Chu and J. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics, vol. 4, no. 1, pp. 63–86, 1998.
[25] D. E. Goldberg and J. Holland, “Genetic algorithms and machine learning,” Machine Learning, vol. 3, no. 2-3, pp. 95–99, 1988.
[26] D. E. Goldberg, “Sizing populations for serial and parallel genetic algorithms,” in Proceedings of the 3rd International Conference on Genetic Algorithms, 1989, pp. 70–79.
[27] C. Coello and G. T. Pulido, “A micro-genetic algorithm for multiobjective optimization,” in Proceedings of the 1st International Conference on Evolutionary Multi-Criterion Optimization, vol. 1993, 2001, pp. 126–140.
[28] G. Dozier, J. Bowen, and D. Bahler, “Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm,” in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, 1994, pp. 306–311.
[29] K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” in Proceedings of the Advances in Intelligent Robotics Systems Conference, 1990, pp. 289–296.
[30] F. Au, Y. Cheng, L. Tham, and Z. Bai, “Structural damage detection based on a microgenetic algorithm using incomplete and noisy modal test data,” Journal of Sound and Vibration, vol. 259, no. 5, pp. 1081 – 1094, 2003.
[31] K. Chebrolu, B. Raman, and S. Sen, “Long-distance 802.11b links: Performance measurements and experience,” in Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, 2006, pp. 74–85.
[32] C. W. Tsai, K. C. Hu, and M. C. Chiang, “A multiple-search multi-start framework for metaheuristics,” in Proceedings of the International Conference on Systems, Man, and Cybernetics, 2014, pp. 2774–2779.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔