(3.229.120.26) 您好!臺灣時間:2021/04/10 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏儒
研究生(外文):Bo-Ru Chen
論文名稱:使用步階阻抗殘斷共振器設計之雙頻帶通濾波器
論文名稱(外文):A Dual-Band Bandpass Filter Design Using Stepped Impedance Stub-Loaded Resonators
指導教授:郭志文郭志文引用關係
指導教授(外文):Chih-Wen Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:源負載耦合缺陷式接地結構四分之一波長步階阻抗共振器馬刺線傳輸零點
外文關鍵詞:source-load couplinga quarter-wavelength Stepped Impedance Stub-Loaded Resonatorsspurlinetransmission zerodefect ground structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代無線通訊產品的普及,射頻電路前端的濾波器扮演很重要的角色,其中多頻帶通濾波器更有值得發展和研究的價值,而濾波器整體體積的微小化更是值得努力追求的目標。本論文提出使用平面式微帶線共振器來設計出應用在無線區域網路系統(wireless local area network,WLAN)的雙頻帶通濾波器。

所提出的濾波器架構中第一頻段頻寬設計為100 MHz中心頻率為2.45 GHz,兩邊擁有源負載耦合(source-load coupling)之方法所產生的兩個傳輸零點,使通帶兩端擁有良好的選擇性(selectivity)。第二頻段為滿足5.15 GHz到5.85 GHz的頻段設計,中心頻率為5.5 GHz頻寬700 MHz如此一來可滿足各國WI-FI/WLAN頻段的應用。而濾波器所使用的共振器為雙模態共振器,使用奇偶模態方法來分析,奇模態為一諧振於5.5 GHz之共振器,而偶模態為諧振於2.45 GHz且可調整第一混波(Spurious response)的四分之一波長步階阻抗共振器(Stepped-impedance Resonator)。為了增加耦合量將共振器挖槽再將饋線增加的開路樁放入槽中,可有效增加濾波器的表現。饋線中再挖出馬刺線(Spurline)用來增加第二帶通高頻的陡峭度提升選擇性,且在兩饋線的耦合端增加缺陷式接地結構使第二頻帶後止帶效果增加。
With the popularity of modern wireless communication products, radio frequency front-end filter circuit plays a very important role, which is worthy of development and the value of research,especially multi-band pass filter.While the overall volume of the filter miniaturization is worth the effort. This paper proposes the use of a plane microstrip line resonator to design the application in the WLAN system (wireless local area network, WLAN) dual-band pass filter.

Filter architecture proposed in the first band is designed at center frequency 2.45 GHz with 100 MHz bandwidth, the two sides of first passband both have transmission zero with the method of source-load coupling ,so that the passband with good selectivity. The second band designed from 5.15 GHz to 5.85 GHz, the center frequency 5.5 GHz with bandwidth 700 MHz is suitable of lots of countries in WI-FI / WLAN applications. The filter is coupled by dual-mode resonator which can use the equivalent circuit modal to analysis.By odd mode analysis , a quarter-wavelength resonator resonating at 5.5 GHz can be abstracted . By even mode analysis, a quarter-wavelength stepped-impedance resonator resonating at 2.45 GHz can be abstracted , and we can adjust impedance ratio
to control spurious response .We slot resonator and insert a open stub , which is from feeding line, into resonator in order to increase the amount of coupling. And we slot feeding line with spurline to improving selectivity of second passband. By using DGS(Defect Ground Structure), rejection band response can be improved after 7 GHz.
論文審定書…………………………………………………………… i
誌謝…………………………………………………………………… ii
中文摘要………………………………………………………….….. iii
Abstract……………………………………………………………….. iv
目錄…………………………………………………………………... v
圖表目錄…………………………………………………………….... vi
第一章 緒論…..………………………………………………………...1
1.1研究動機與目的………………………………………….….…......1
1.2研究方法………………………………………………………....….3
1.3濾波器使用之基板與規格…………………………………....…….3
1.4章節介紹……………………………………………………………..4
第二章 共振器與濾波器基本理論…….…………………………...5
2.1共振器….…………………………………………………………….5
2.1.1共振器簡介………………..…………………….…….……….5
2.1.2共振器各項參…………………………………………………......5
2.2 RLC組成之共振電路………………………………...……………..7
2.3傳輸線共振電路….……..…...................................................13
2.3.1一段短路的 傳輸線……….……..……….......……………........13
2.3.2一段開路的 傳輸線…………….....………………………..........15
2.3.3一段短路的 傳輸線………………….………......………...........17
2.3.4一段開路的 傳輸線……………......………….…………...........18
2.4微帶線平面共振器的使用………………………....……………...19
2.5濾波器的基礎理論…………....…………………………………...21
2.6耦合型濾波器………………………………....…………………...22
2.6.1耦合式共振器原理…………...…………….………….….....22
2.6.2電耦合(電容耦合)………………………….....…………......23
2.6.2磁耦合(電感耦合)……….....………………………………...24
2.6.3電磁耦合(混合式耦合)……….....…………………………...26
2.7步階阻抗共振器……………………….………………………....28
2.8四分之一波長步階阻抗共振器……………….………………....33
第三章 帶通濾波器之設計與模擬…….…………………………….….35
3.1共振器之設計……………………………………..……………...35
3.2濾波器設計與分析…………………………………………….....37
3.3濾波器優化設計與改良……………………………………….....44
第四章 實際量測與比較…………………………………………….…..48
4.1量測結果……………………………………………………….....48
4.2模擬與實測差異探討………………………………………........50
4.3與相關操作頻帶論文比較…………………………………….....50
第五章 結論………………………………………….…………...........51
參考文獻.................................................................................52
[1] X.Y.Zheng and J.X.Chen, “Dual-band bandpass filters using stub-loaded resonatore,” IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 8, pp.
583-585, Aug. 2007.

[2] F.C.Chen, “ Tri-band bandpass filter using stub loaded resonators,” Electrion.
Lett., vol. 44, no. 12, pp. 747-749, Jun. 2008.

[3] X.Y. Zhang and Quan Xue, “ Novel centrally loaded resonators and their
applications to bandpass filters,” IEEE Trans. Micow Theory Techn, vol. 56,
pp. 913-921, 2008.

[4] W.S. Chang and C.Y.Cheng, “Analytical design of microstrip short circuit
terminated stepped-impedance resonator dual-band filters,” IEEE Trans. Micow
Theory Tech., vol. 59, no. 7, pp. 1730-1739, July 2011.

[5] Y.C.Chiou, J.T.Huang, and E.Cheng, “Broadband quasi-chebychev bandpass filters
with multimode stepped-impedance resonators(SIRs),” IEEE Trans. Microw Theory
Tech., vol. 54, no. 8, pp.3352-3358, Aug 2006.

[6]K.S.Chin and J.H.Yeh, “Dual-wideband bandpass filter using short-circuited
stepped-impedance resonators,” IEEE Trans. Microw and wireless Compon.Lett., vol.
19, no.3, pp.155-157, Mar. 2009.

[7]C.H.Lee, “Design of a new tri-band microstrip BPF using combined
quarter-wavelength SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11,
pp.594-596, Nov. 2006.

[8] S. Amari, “Direct synthsis of folded symmetric resonator filters with source-loading
coupling,” IEEE Microw. Wireless Compon. Lett., vol.11, no. 6, pp. 264–266, Jun.
2001.
[9]L.K.Yeung and K.L.A.Wu, “Compact second-order LTCC bandpass filter with two
finite transmission zeros,” IEEE Microw. Theory Tech., vol. 51, no. 2, Feb 2003.

[10] C. K. Liao and C. Y. Chang, “Design of microstrip quadruplet filters with source-load coupling,” IEEE Trans. Microw.Theory Tech., vol. 53, no. 7, pp. 2302-2308, July 2005.

[11]X.Y.Zheng, C.H.Chan, Q.Xue, and B.J.Hu, “Dual-band bandpass filter with controllable bandwidths using two coupling paths,” IEEE Microw. and Wireless compon. Lett., vol. 20, no. 11, pp.616-618, Nov. 2010.

[12] X.Y.Zheng, C.H.Chan, Q.Xue, and B.J.Hu, “Design of microstrip spur-line band-stop filter,” IEEE Microw. and Wireless compon. Lett., vol. 1, iss. 6, pp.209-214, Nov. 1977.

[13]X.Lai, C.H.Liang, H.Di, and B.Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. and Wireless compon. Lett., vol. 20, no. 5, pp.365-267, May. 2010.

[14] Wen-Hua Tu, Kai Chang, “Compact microstrip bandstop filter using open stub
and spurline, ” IEEE Microw. Wireless Compon.Lett. vol 15, no 4, pp.268-270,
Apri1.2005.

[15] C.S.Kim, J. S. Park, D. Ahn, and J. B. Lim, “A novel I-D periodic defected ground structure for planar circuits,” IEEE Microwave Guide Wave Lett., vol. 10, no. 4, pp.13I-133, Apr. 2000.

[16] Feng, W.J. , “Novel dual-band bandpass filter using multi-mode resonator”, High Speed Intelligent Communication Forum (HSIC), 2012 4th International, pp.1-4,IEEE2012.

[17] Qing-Xin Chu, “Dual-band filter using asymmetrical stub-loaded resonator with independently controllable frequencies and bandwidths”, IET Microwaves, Antennas & Propagation, Vol.7, ISS9, pp.729-734, Feb.2013.

[18] Haiwen Liu, “Compact Dual-Band Bandpass Filter Using Quadruple-Mode Square Ring Loaded Resonator (SRLR) ”, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 23, NO. 4, APRIL 2013.

[19] Lin-Chuan Tsai ,“Design of Dual-band Bandpass Filters Using Stepped-Impedance Resonators”, Cross Strait Quad-Regional Radio Science and Wireless Technology Confrence,pp.563-566,IEEE2011.

[20]羅友鴻,應用於無線區域網路之雙頻帶通濾波器,國立中山大學電機工程學系碩士論文,民國103年7月

[21]翁敏航(2006),射頻被動元件設計,台北:台灣東華書局
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔