
[1]Intel Technology Node, Online: http://www.intel.com.tw/. [2]International Technology Roadmap for Semiconductors, Online: http://public.itrs.net/. [3]Yuan Taur and Tak H. Ning, 1998, Fundamentals of Modern VLSI Devices, New York. [4]D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, “FinFET—A selfaligned doublegate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 23202325, December 2000. [5]J. Hu, A. Nainani, Y. Sun, K. C. Saraswat, and H. S. P. Wong, “Impact of fixed charge on metalinsulatorsemiconductor barrier height reduction,” Applied Physics Letters, vol. 99, no. 25, pp. 14, December 2011. [6]B. Kim, D. I. Bae, P. Zeitzoff, X. Sun, T. E. Standaert, N. Tripathi, A. Scholze, P. J. Oldiges, D. Guo, H. Shang, and K. I. Seo, “Investigation of fixed oxide charge and fin profile effects on bulk FinFET device characteristics,” IEEE Electron Devices Letters, vol. 34, no. 12, pp. 14851487, December 2013. [7]H. C. You, P. Y. Kuo, F. H. Ko, T. S. Chao, and T. F. Lei, “The impact of deep Ni salicidation and NH3 plasma treatment on nanoSOI FinFETs,” IEEE Electron Devices Letters, vol. 27, no. 10, pp. 799801, October 2006. [8]Sentaurus Device, User Guide, Synopsys Inc. ver. I2013.12, December 2013. [9]C. L. Lin, P. H. Hsiao, W. K. Yeh, H. W. Liu, S. R. Yang, Y. T. Chen, K. M. Chen, and W. S. Liao, “Effects of fin width on device performance and reliability of doublegate ntype FinFETs,” IEEE Trans. Electron Devices, vol. 60, no. 11, pp. 36393644, November 2013. [10]J. Kedzierski, M. Ieong, E. Nowak, T. S. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried, and H. S. P. Wong, “Extension and source/drain design for highperformance FinFET devices,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 952958, April 2003. [11]A. V. Y. Thean, Z. H. Shi, L. Mathew, T. Stephens, H. Desjardin, C. Parker, T. White, M. Stoker, L. Prabhu, R. Garcia, B. Y. Nguyen, S. Murphy, R. Rai, J. Conner, B. E. White, and S. Venkatesan, “Performance and variability comparisons between multigate FETs and planar SOI transistor,” in IEDM Tech. Dig., pp. 14, 2006. [12]A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub0.1μm MOSFET’s: a 3d “Atomistic” simulation study,” IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 25052513, December 1998. [13]N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “On discrete random dopant modeling in driftdiffusion simulation: physical meaning of ‘atomistic’ dopants,” Microelectronics Reliability, vol. 42, no. 2, pp. 189199, February 2002. [14]Y. Li, C. H. Hwang, T. Y. Li, and M. H. Han, “Processvariation effect, metalgate workfunction fluctuation, and randomdopant fluctuation in emerging CMOS technologies,” IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 437447, February 2010. [15]P. Magnone, A. Mercha, V. Subramanian, P. Parvais, N. Collaert, M. Dehan, S. Decoutere, G. Groeseneken, J. Benson, T. Merelle, R. J. P. Lander, F. Crupi, and C. Pace, “Matching performance of FinFET devices with fin widths down to 10 nm,” IEEE Electron Device Letters, vol. 30, no. 12, pp. 13741376, December 2009. [16]P. Magnone, F. Crupi, A. Mercha, P. Andricciola, H. Tuinhout, and R. J. P. Lander, “FinFET mismatch in subthreshold region: theory and experiments,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 28482856, November 2010. [17]N. Xu, F. Andrieu, B. Ho, B.Y. Nguyen, O. Weber, C. Mazuré, O. Faynot, T. Poiroux, and T.J. K. Liu, “Impact of back biasing on carrier transport in ultra thinbody and BOX (UTBB) fully depleted SOI MOSFETs,” in Proc. Symp. VLSI Tech., pp. 113114, 2012. [18]E. Baravelli, M. Jurczak, N. Speciale, K. D. Meyer and A. Dixit, “Impact of LER and random dopant fluctuations on FinFET matching performance,” IEEE Trans. on Nanotechnology, vol. 7, no. 3, pp. 291298, May 2008. [19]F. A. Lema, X. Wang, S. M. Amoroso, C. Riddet, B. Cheng, L. Shifren, R. Aitken, S. Sinha, G. Yeric, and A. Asenov, “Performance and variability of doped multithreshold FinFETs for 10nm CMOS,” IEEE Trans. Electron Devices, vol. 61, no. 10, pp. 33723378, October 2014. [20]P. Yao, R Trihy, J. Ge, K. Breen, and T. McConaghy, “Understanding and designing for variation in GLOBALFOUNDRIES 28 nm technology,” Proceedings of Design Automation Conference, User Track, June 2012. [21]T. McConaghy, K. Breen, J. Dyck, and A. Gupta, VariationAware Design of Custom Integrated Circuits: A Handson Field Guide, pp. 6768, Springer, New York, 2013. [22]Z. Song, Z. Chen, A. Z. Yong, Y. Song, J. Wu, and K. Chien, “The failure mechanism worst stress condition for hot carrier injection of NMOS,” ECS Trans., vol. 52, no. 1, pp. 947952, March 2013. [23]W. S. Lau, “An extended unified schottkypoolefrenkel theory to explain the currentvoltage characteristics of thin film metalinsulatormetal capacitors with examples for various highk dielectric materials,” ECS Solid State Sci., vol. 1, no. 6, pp. N139N148, May 2012. [24]J.Y. Cheng, C. W. Yeung, and C. Hu, “Extraction of front and buried oxide interface trap densities in fully depleted silicononinsulator metal oxidesemiconductor fieldeffect transistor,” ECS Solid State Letters, vol. 2, no. 5, pp. Q32Q34 , February 2013. [25]H. W. Cheng, F. H. Li, M.H. Han, C.Y. Yiu, C.H. Yu, K.F. Lee, and Y. Li, “3D device simulation of work function and interface trap fluctuations on highκ / metal gate devices,” in IEDM Tech. Dig., pp. 379382, 2010. [26]C. Y. Chen, J. T. Lin, M. H. Chiang, and W. C. Hsu, “A steep subthreshold swing technique for gateallaround SOI MOSFETs,” ECS Trans., vol. 66, no. 5, pp. 8792, May 2015. [27]S. D. Suk, M. Li, Y. Y. Yeoh, K. H. Yeo, J. K. Ha, H. Lim, H. W. Park, D. W. Kim, T. Chung, K. Seok, and W. S. Lee, “Characteristics of sub 5nm trigate nanowire MOSFETs with single and poly si channels in SOI structure,” in Proc. Symp. VLSI Tech., pp. 142143, 2009. [28]P. Hashemi, L. Gomez, and J. L. Hoyt, “Gateallaround nMOSFETs with uniaxial tensile straininduced performance enhancement scalable to sub10nm nanowire diameter,” IEEE Trans. Electron Devices, vol. 30, no. 4, pp. 401403, April 2009. [29]M. Li, K. H. Yeo, S. D. Suk, Y.Y. Yeoh, D. W. Kim, T. Y. Chung, K. S. Oh and W. S. Lee, “Sub10 nm gateallaround CMOS nanowire transistors on bulk si substrate,” in Proc. Symp. VLSI Tech., pp. 9495, 2009. [30]Y. Jiang, T. Y. Liow, N. Singh, L. H. Tan, G. Q. Lo, D. S. H. Chan and D. L. Kwong, “Nanowire FETs for low power CMOS applications featuring novel gateallaround single metal FUSI gates with dual Φm and vt tuneability,” in IEDM Tech. Dig., pp. 14, 2009. [31]S. D. Suk, K. H. Yeo, K. H. Cho, M. Li, Y. Y. Yeoh, S. Y. Lee, S. M. Kim, E. J. Yoon, M. S. Kim, C. W. Oh, S. H. Kim, D. W. Kim and D. Park, “Highperformance twin silicon nanowire MOSFET (TSNWFET) on bulk si wafer,” IEEE Trans. on Nanotechnology, vol. 7, no. 2, pp. 181184, March 2008. [32]Y. Jiang, T. Y. Liow, N. Singh, L. H. Tan, G.Q. Lo, D. S. H. Chan and D. L. Kwong, “Performance breakthrough in 8 nm gate length gateallaround nanowire transistors using metallic nanowire,” in Proc. Symp. VLSI Tech., pp. 3435, 2008. [33]N. Singh, A. Agarwal, L. K. Bera, T. L. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian and D. L. Kwong, “Highperformance fully depleted silicon nanowire (diameter ≤5nm) gateallaround CMOS devices,” IEEE Trans. Electron Devices Letters, vol. 27, no. 5, pp. 383386, May 2006. [34]K. H. Yeo, S. D. Suk, M. Li, Y. Y. Yeoh, K. H. Cho, K. H. Hong, S. Yun, M. S. Lee, N. Cho, K. Lee, D. Hwang, B. Park, D. W. Kim D. Park and B. I. Ryu, “Gateallaround (GAA) twin silicon nanowire MOSFET (TSNWFET) with 15 nm length gate and 4 nm radius,” in IEDM Tech. Dig., pp. 14, 2006. [35]C. Y. Chen, Y. B. Liao, and M. H. Chang, “Scaling study of nanowire and multigate MOSFETs,” IEEE SolidState and IntegratedCircuit Technology Conf., pp. 5760, 2008. [36]C. Y. Chen, Y. B. Liao, M. H. Chang, K. Kim, W. C. Hsu and S. Y. Chang, “Optimal design and performance assessment of extremelyscaled si nanowire FET on insulator,” IEEE SOI Conf., pp. 12, 2009. [37]X. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Boker, and C. Hu, “Sub 50nm FinFET: PMOS,” in IEDM Tech. Dig., pp. 6770, 1999. [38]N. Lindert, L. Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J. Bokor, and C. Hu, “Sub60nm quasiplanar FinFETs fabricated using a simplified process,” IEEE Electron Devices Letters, vol. 22, no. 10, pp. 487489, October 2001. [39]TaurusDevice ver: X2005.10, User Guide Synopsys Inc., Oct. 2005. [40]C. Lombardi, S. Manzini, A. Saporto, and M. Vanzi, “A physically based mobility model for numerical simulation of nonplanar devices,” IEEE Trans. on Computer Aided Design, vol. 7, no. 11, pp. 11641171, November 1988. [41]M. H. Na, E. J. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,” in IEDM Tech. Dig., pp. 121124, 2002. [42]J. Deng, and H. S. P. Wong, “Metrics for performance benchmarking of nanoscale si and carbon nanotube FETs including device nonidealities,” IEEE Trans. Electron Devices, vol. 53, no. 6, pp. 401403, June 2006. [43]S. D. Suk, M. Li, Y. Y. Yeoh, K. H. Yeo, K. H. Cho, I. K. Ku, H. Cho, W. J. Jang, D. W. Kim, D. Park, and W. S. Lee, “Investigation of nanowire size dependency on TSNWFET,” in IEDM Tech. Dig., pp. 891894, 2007. [44]I. M. T. Luna, J. B. Rodan, F. G. Ruiz, C. M. Blanque, and F. Gamiz, “An analytical mobility model for square gateallaround MOSFETs,” SolidState Electronics vol. 90, pp. 1822, March 2013. [45]M. A. Khayer, and R. K. Lake, “Diameter dependent performance of highspeed, lowpower InAs nanowire fieldeffect transistors,” Journal of Applied Physics, vol. 107, no. 1, pp.0145021  0145027, January 2010. [46]J. T. Lin, C. Y. Chen, and M. H. Chang, “Pragmatic study of the nanowire FETs with nonideal gate structures,” IEEE Silicon Nanoelectronics Workshop Conf., pp. 12, 2010. [47]Y. B. Liao, M. H. Chiang, Y. S. Lai, and W. C. Hsu, “A pragmatic design methodology using proper isolation and doping for bulk FinFETs,” SolidState Electronics, vol. 85, pp. 4553, July 2013. [48]K. Shimizu, T. Saraya, and T. Hiramoto, “Suppression of electron mobility degradation in (100)oriented doublegate ultrathin body nMOSFETs,” IEEE Electron Devices Letters, vol. 31, no. 4, pp. 284286, April 2010. [49]A. Afzalian, C. W. Lee, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Quantum confinement effects in capacitance behavior of multigate silicon nanowire MOSFETs,” IEEE Trans. on Nanotechnology, vol. 10, no. 2, pp. 300309, March 2011. [50]R. Granzner, S. Thiele, C. Schippel, and F. Schwierz, “Quantum effects on the gate capacitance of trigate SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 57, no. 12, pp. 32313238, December 2010. [51]K. Majumdar, N. Bhat, P. Majhi, and R. Jammy, “Effects of parasitics and interface traps on ballistic nanowire FET in the ultimate quantum capacitance limit,” IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 22642273, September 2010. [52]J. Zou, Q. Xu, J. Luo, R. Wang, R. Huang, and Y. Wang, “Predictive 3D modeling of parasitic gate capacitance in gateallaround cylindrical silicon nanowire MOSFETs,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 33793387, October 2011. [53]D. J. Frank, Y. Taur, M. Ieong, and H. S. P. Wong, “Monte carlo modeling of threshold variation due to dopant fluctuations,” in Proc. Symp. VLSI Tech., pp. 169170, 1999. [54]P. A Stolk, F. P. Widdershoven, and D. B. M. Klaassen, “Modeling statistical dopant fluctuations in MOS transistors,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 19601971, September 1998. [55]H. S. Wong, and Y. Taur, “Threedimensional “Atomistic” simulation of discrete random dopant distribution effects sub0.1μm MOSFET''s,” in IEDM Tech. Dig., pp. 705708, 1993. [56]A. Asenov, and S. Saini, “Suppression of random dopantinduced threshold voltage fluctuations in sub0.1μm MOSFET’s with epitaxial anddoped channels,” IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 17181724, December 1999. [57]A. Asenov, G. Slavcheva, A. R. Brown, J. H. Davies, and S. Saini, “Increase in the random dopant induced threshold fluctuations and lowering in sub100 nm MOSFETs due to quantum effects: a 3D densitygradient simulation study,” IEEE Trans. Electron Devices, vol. 48, no. 4, pp. 722729, April 2001. [58]I. D. Mayergoyz, and P. Andrei, “Statistical analysis of semiconductor devices,” Journal of Applied Physics, vol. 90, no. 6, pp. 30193029, September 2001. [59]P. Andrei, and I. Mayergoyz, “Quantum mechanical effects on random oxide thickness and random doping induced fluctuations in ultrasmall semiconductor devices,” Journal of Applied Physics, vol. 94, no. 11, pp. 71637172, December 2003. [60]S. Roy, and A. Asenov, “Where do the dopants go?,” Science, vol. 309, no. 5733, pp. 388390, July 2005. [61]M. Aldegunde, A. Martinez, and A. Asenov, “Nonequilibrium green’s function analysis of cross section and channel length dependence of phonon scattering and its impact on the performance of Si nanowire field effect transistors,” Journal of Applied Physics, vol. 110, no. 9, pp. 0945181  0945189, November 2011. [62]J. Song, B. Yu, Y. Yuan, and Y. Taur, “A review on compact modeling of multiplegate MOSFETs,” IEEE Trans. Circuits and Systems, vol. 56, no. 8, pp. 437447, August 2009. [63]X. Tang, V. K. De, and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement,” IEEE Trans. Very Large Scale integration, vol. 5, no. 4, pp. 437447, December 1997. [64]S. Mudanai, W. K. Shih, R. Rios, X. Xi, J. H. Rhew, K. Kuhn, and P. Packan, “Analytical modeling of output conductance in longchannel halodoped MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 20912097, December 2006. [65]M. H. Chiang, J. N. Lin, K. Kim, and C. T. Chunag, “Random dopant fluctuation in limitedwidth FinFET technologies,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 20552059, August 2007. [66]P. Singh, N. Singh, J. Miao W. T. Park, and D. L. Kwong, “Gateallaround junctionless nanowire MOSFET with improved lowfrequency noise behavior,” IEEE Electron Devices Letters, vol. 32, no. 12, pp. 17521754, December 2011. [67]J. W. Yang, and J. G. Fossume, “On the feasibility of nanoscale triplegate CMOS transistors,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 11591164, June 2005. [68]J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Y. L. Ferain, P. Razavi, B. O’Nell, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nature Nanotechnology, vol. 5, no. 3, pp. 225229, February 2010. [69]R. T. Doria, M. A. Pavanello, R. D. Trevsoli, M. D. Souza, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, and J. P. Colinge, “Analog operation of junctionless transistors at cryogenic temperatures,” IEEE SOI Conf., pp. 12, 2010. [70]L. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate fieldeffect transistor,” Journal of Applied Physics, vol. 94, no. 5, pp.0535111  0535112, February 2009. [71]L. W. Lee, A. N. Nazarow, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, R. T. Doria, and J. P. Colinge, “Low subthreshold slope in junctionless multigate transistors,” Journal of Applied Physics, vol. 96, no. 10, pp. 1021061  1021063, March 2010. [72]J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarow, and Rodrigo T. Doria, “Reduced electric field in junctionless transistors,” Journal of Applied Physics, vol. 96, no. 7, pp. 0735101  0735103, February 2010. [73]C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge, “Hightemperature performance of silicon junctionless MOSFETs,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 620625, March 2010. [74]E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, “Effective mobility in nanowire FETs under quasiballistic conditions,” IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 336344, January 2010. [75]S. Migita, Y. Morita, M. Masahara, and H. Ota, “Electrical performances of junctionlessFETs at the scaling limit (LCH = 3 nm),” in IEDM Tech. Dig., pp. 14, 2012. [76]Y. Li, C. H. Hwang, T. Y. Li, and M. H. Han, “Processvariation effect, metalgate workfunction fluctuation, and randomdopant fluctuation in emerging CMOS technologies,” IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 437447, February 2010. [77]G. Giusi, and A. Lucibello, “Variability of the drain current in junctionless nanotransistors induced by random dopant fluctuation,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 702706, March 2014. [78]V. P. Georgiev, E. A. Towie, and A. Asenov, “Impact of precisely positioned dopants on the performance of an ultimate silicon nanowire transistor: A full threedimensional NEGF simulation study,” IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 965971, Mar. 2013. [79]S. Markov, B. Cheng, and A. Asenov, “Statistical variability in fully depleted SOI MOSFETs due to random dopant fluctuations in the source and drain extensions,” IEEE Electron Device Letters, vol. 33, no. 3, pp. 315317, Mar. 2012. [80]X. Tang, V. K. De, and J. D. Meinl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement,” IEEE Trans. Very Large Scale Integration System, vol. 5, no. 4, pp. 369376, December 1997. [81]S. Mudanai, W. K. Shih, R. Rios, X. Xi, J. H. Rhew, K. Kuhy, and P. Packan, “Analytical modeling of output conductance in longchannel halodoped MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 20912097, September 2006. [82]J. P. Duarte, M. S. Kim, S. J. Choi, and Y. K. Choi, “A compact model of quantum electron density at the subthreshold region for doublegate junctionless transistors,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 10081012, April 2012. [83]J. P. Duarte, S. J. Choi, and Y. K. Choi, “A fullrange drain current model for doublegate junctionless transistors,” IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 42194225, December 2011. [84]C. Y. Chen, J. T. Lin, and M. H. Chiang, “Comparative study of process variations in junctionless and conventional doublegate MOSFETs,” IEEE Nanotechnology Material and Device Conf., pp. 8183, 2013. [85]S. M. Nawaz, S. Dutta, A. Chattopahyay, and A. Mallik, “Comparison of random dopant and gatemetal workfunction variability between junctionless and conventional FinFETs,” IEEE Electron Devices Letters, vol. 35, no. 6, pp. 663665, June 2014. [86]C. Y. Chen, J. T. Lin, and M. H. Chiang, “Highperformance ultralow power junctionless nanowire FET on SOI substrate in subthreshold logic application,” IEEE SOI Conf., pp. 12, 2010. [87]Tohru Mogami, “Challenges for sub10 nm CMOS devices,” IEEE ICSICT Conf., pp. 2326, 2006. [88]S. Takagi, and M. Takenaka, “High mobility material channel CMOS technologies based on heterogeneous integration,” IEEE International Workshop on Junction Technology Conf., pp. 16, 2011. [89]J. G. Fossum, S. Krishnan, O. Faynot, S. Cristoloveanu, and C. Raynaud, “Subthreshold kinks in fully depleted SOI MOSFET’s,” IEEE Electron Devices Letters, vol. 16, no. 12, pp. 542544, December 1995. [90]J. T. Lin, H. H. Chen, K. Y. Lu, C. H. Sun, Y. C. Eng, C. H. Kuo, P. H. Lin, T. Y. Lai, and F. L. Yang, “Design theory and fabrication process of 90nm UnipolarCMOS,” IEEE SNW Conf., pp. 12, 2010. [91]N. N. Mojumder, and K. Roy, “Bandtoband tunneling ballistic nanowire FET: circuitcompatible device modeling and design of ultralowpower digital circuits and memories,” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 21932201, October 2009. [92]K. H. Kao, A. S. Verhulst, R. Rooyackers, B. Douhard, J. Delmotte, H. Bender, O. Richard, W. Vandervorst, E. Simoen, A. Hikavyy, R. Loo, K. Arstila, N. Collaert, A. Thean, M. M. Heyns, and K. D. Meyer, “Compressively strained SiGe bandtoband tunneling model calibration based on pin diodes and prospect of strained SiGe tunneling fieldeffect transistors” Journal of Applied Physics, vol. 116, no. 21, pp. 2145061  21450611, December 2014. [93]W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, “Tunneling fieldeffect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec” IEEE Electron Device Letters, vol. 28, no. 8, pp. 743745, August 2007. [94]C. Charbuillet, E. Dubois, S. Monfray, P. Bouillon, and T. Skotnicki, “Fabrication and analysis of CMOS fullycompatible high conductance impactionization MOS (IMOS) transistors,” Int. ESSDERC Conf., pp. 299302, 2006. [95]P. G. Chen, Y. T. Wei, and M. H. Lee, “Experimental demonstration of ferroelectric gatestack AlGaN/GaNonSi MOSHEMTs with voltage amplification for power applications,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 30143017, August 2014. [96]M. H. Lee, Y. T. Wei, J. C. Lin, C. W. Chen, W. H. Tu, and M. Tang, “Ferroelectric gate tunnel fieldeffect transistors with lowpower steep turnon” AIP Advance, vol. 4, no. 10, pp. 1071171  1071176, October 2014. [97]Y. B. Liao, M. H. Chiang, and W.C. Hsu, “Performance evaluation of stacked gateallaround MOSFETs,” Proc. EuroSOI, pp. 12, 2014. [98]C. Shen, J. Q. Lin, E. H. Toh, K. F. Chang, P. Bai, C. H. Heng, G. S. Samudra and Y. C. Yeo. “On the performance limit of impactionization transistors,” in IEDM Tech. Dig., pp. 117120, 2007. [99]K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, “IMOS: a novel semiconductor device with a subthreshold slope lower than KT/q” in IEDM Tech. Dig., pp. 289292, 2002. [100]E. H. Toh, G. H. Wang, L. Chan, G. Q. Lo, G. Samudra, and Y. C. Yeo, “Strain and materials engineering for the IMOS transistor with an elevated impactionization region” IEEE Trans. Electron Device, vol. 54, no. 10, pp. 27782785, October 2007. [101]D. Suh, and J. G. Fossum, “A physical chargebased model for nonfully depleted SOI MOSFET’s and its use in assessing floatingbody effects in SO1 CMOS circuits,” IEEE Trans. Electron Devices, vol. 42, no. 4, pp. 728737, April 1995. [102]T. K. Suzuki, and T. Sugii, “Scalingparameterdependent model for subthreshold swing S in doublegate SOI MOSFETs” IEEE Electron Device Letters, vol. 15, no. 11, pp. 466468, November 1994. [103]C. P. Auth, and J. D. Plummer, “Scaling theory for cylindrical, fullydepleted, surroundinggate MOSFETs” IEEE Electron Device Letters, vol. 18, no. 2, pp. 7476, February 1997. [104]Y. Okuto, and C. R. Crowell, “Threshold energy effect on avalanche breakdown voltage in semiconductor junctions,” SolidState Electronics, vol. 18, no. 2, pp.161168, July 1975. [105]C. Y. Chen, J. T. Lin, and M. H. Chiang, “Performance optimization for the sub22 nm fully depleted SOI nanowire transistors,” SolidState Electronics, vol. 92, pp. 5762, February 2014. [106]S. Veerarghavan, and J. G. Fossum, “A physical shortchannel model for the thinfilm SOI MOSFET application to device and circuit CAD” IEEE Trans. Electron Device, vol. 35, no. 11, pp. 18661875, November 1988. [107]J. W. Yang, and J. G. Fossum, “On the feasibility of nanoscale triplegate CMOS transistors” IEEE Trans. Electron Device, vol. 52, no. 6, pp. 11591164, June 2005. [108]L. Chang, M. Ieong, and M. Yang, “CMOS circuit performance enhancement by surface orientation optimization,” IEEE Trans. Electron Devices, vol. 51, no. 10, pp. 16211627, October 2004. [109]M. Yokiyama, Y. Urabe, T. Yasuda, H. Ishii, and N. Miyata, “High mobility IIIVoninsulator MOSFETs on si with ALDAl2O3 box layer,” in Proc. Symp. VLSI Tech., pp. 235236, 2010.
