(3.238.88.35) 您好!臺灣時間:2021/04/11 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王育翔
研究生(外文):Yu-Shiang Wang
論文名稱:創新壓電發電器於大氣質譜游離源之應用
論文名稱(外文):Novel piezo-generator as the ion source for ambient mass spectrometry detection
指導教授:林哲信
指導教授(外文):Che-Hsin Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:大氣壓化學游離法脫附游離電暈放電質譜壓電紙層析
外文關鍵詞:Paper chromatographyMass spectrometryPiezoelectric materialCorona dischargeDesorption/IonizationAtmospheric pressure chemical ionization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用打火機壓電材料按壓產生電暈放電的特性,設計數種不同形式的游離源,將其運用在質譜偵測的電壓源使用上。其中傳統的游離源在使用上,高壓電源的供應在游離的過程中也扮演著非常重要的角色,幾乎大多數的游離源皆必須連接一高壓電源的使用,本研究開發其中一種利用壓電材料來取代一般游離源需要使用的高壓電源供應器,並利用快速的黃光微影製程設計一微電漿晶片,製作一套輕巧且便於攜帶的質譜前端游離源系統。針對壓電發電器的放電特性、在微電漿晶片中的放電光譜特性、不同電極所產生的電場對於離子濃度的影響來做量測,比較其中的差異並且探討最適合的參數。樣本的脫附游離為利用質譜檢測做質量分析前非常重要的一個步驟,而打火機壓電發電器所產生的高壓能夠提供相對足夠的溫度及能量對樣本進行脫附及游離。因此另外也運用壓電發電器本身能夠產生高壓的電暈放電,且形成放電電弧放沿著各種固體樣本表面劃過的特性,直接針對數種不同的標準樣本及天然物樣本進行直接分析。本研究也結合紙層析法,量測經濾紙層析後沉澱於濾紙上的樣本分析物,其結果顯示出,壓電發電器能夠有效的對經濾紙層析分離後的樣本分子進行直接游離。打火機壓電發電器能夠產生10 kV到12 kV的電暈放電脈衝,每個脈衝所帶來的能量都足以能夠使通過的氦氣流產生均勻的氦氣電漿,而其中所量測到的離子強度也高達105 ions/cm3,離子密度顯示出高能量的電暈放電可以有效的同時脫附及游離樣本。此外,快速、低成本及可攜式的質譜檢測能夠在本研究所提出的系統上以更簡單的方式呈現。本系統可以直接針對各種固體樣本進行直接的質譜游離,不需要經由繁複的樣本前處理步驟,便可以得到明確且有高辨識度的質譜訊號圖。不同的樣本測試結果顯示出除了標準樣本的量測外,同時也能夠針對天然物樣本進行檢測分析,此創新的裝置系統將對未來質譜的發展提供一個良好的量測架構。
Mass spectrometry is a powerful tool for both quantitative and qualitatively analyzing specific chemical compositions in samples. Mass spectrometry is usually adopted in protein, pesticides, plasticizers, chemical additives and artificial hormones detection in food and agriculture industries. In this study, lighters piezoelectric material is used to produce a corona discharge for design several different forms of ion sources, which was used in mass spectrometry as the high voltage power supply. A low-cost lighter piezo-generator is capable of producing a high voltage pulse of 10~12 kV for generating corona discharge. The energetic corona discharge simultaneously desorbs and ionizes the solid samples for mass spectrometry detections. Results shows that the discharge behavior of the lighter piezo-generator is stable enough for producing high voltage pulses and the measured ion intensity is higher than 105 ions/cm3. Use the photolithography process to design a microplasma chip, and making a lightweight and portable ionization ion source system. The discharge characteristics of the piezoelectric generator and the spectral characteristics in the micro plasma discharge in the microplasma chip was detected. And the optical emission spectrum of the discharged glow indicates that helium and oxygen are successfully discharged. This study also measured the relationship between the electric field strength and the TIC (total ion concentration) with different electrode distances from 5 mm to 15 mm. Results showed that the lighter piezo-generator could generate a measured ion intensity of up to 105 ions/cm3 which was high enough for MS detection applications. Although a smaller gap could produce higher ion intensity, a 5 mm gap for the discharge electrode was determined to leave the space for sample loading purpose. The energetic and relatively high temperature corona discharge was used for simultaneously desorbing and ionizing the sample for MS detection. The study also combine paper chromatography to form a kind of novel ionization method. The results show that the piezoelectric generator can effectively detect sample molecules separated by paper chromatography. Standard sample of caffeine is used to evaluate the sensing performance of the developed ion source. In addition, three clinical medicines including a human sex hormone of estradiol, panadol tablet and a typical steroid of clenbuterol are successfully detected. The developed ion sources by the lighter piezo-generator has demonstrated the possibility for establishing a portable MS detection system.
審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xiii
符號表 xiv
簡寫表 xv
第一章緒論 1
1.1 前言 1
1.2 常壓電漿大氣質譜法及大氣質譜游離源簡介 2
1.3 常壓大氣質譜法游離源技術回顧 5
1.3.1 脫附電噴灑游離法 6
1.3.2 實時直接分析法 7
1.3.3 大氣電漿輔助脫附/游離法 8
1.3.4 低溫電漿探針 10
1.3.5 介電質放電游離法 11
1.3.6 脫附電暈束游離質譜法 13
1.4 壓電材料的應用技術回顧 14
1.5 研究動機及目的 17
1.6 論文架構 19
第二章實驗原理 21
2.1 質譜偵測基本原理 21
2.2 氦氣電漿的游離機制與簡介 22
2.2.1 氦氣電漿 22
2.2.2 氦氣電漿的游離機制 24
2.3 直流電暈放電 26
2.4 壓電材料的基本原理 27
2.4.1 正壓電效應 27
2.4.2 逆壓電效應 28
2.4.3 壓電材料的種類 29
2.5 光學微影製程 30
2.5.1 塗布光阻 30
2.5.2 曝光及顯影 31
2.6 紙層析法基本原理 32
2.7 實驗設計 34
2.8 實驗檢測目標 35
2.8.1 壓電發電器結合微晶片的質譜量測 35
2.8.2 運用壓電發電器電暈放電的質譜量測 35
第三章實驗與方法 37
3.1 微流體晶片製作 37
3.1.1 基板清洗與磁控濺鍍 38
3.1.2 黃光微影製程 39
3.2 壓電發電器的特性 40
3.2.1 壓電發電器放電的特性 41
3.3 放電特性與量測設備 43
3.3.1 示波器 43
3.3.2 高壓探棒 44
3.3.3 雪崩光電二極體 45
3.4 光譜分析 45
3.5 質譜分析 46
3.6 壓電發電器結合微晶片整體架構與實驗流程 48
3.6.1 實驗整體架構 48
3.6.2 氣體供應 50
3.7 紙層析系統及質譜量測架構與實驗流程 51
3.7.1 濾紙選用 51
3.7.2 紙層析系統實驗架構與流程 52
第四章實驗結果與討論 53
4.1 壓電發電器的基本特性量測 53
4.1.1 電壓訊號量測 53
4.1.2 APD與電壓關係量測 (電壓與光強度) 54
4.1.3 電場強度與總離子濃度的關係 (電極距離) 55
4.2 OES光譜訊號量測 56
4.2.1 氦氣電漿光譜訊號的驗證 57
4.2.2 不同裝置所量測到的光譜訊號 58
4.3 壓電發電器結合微晶片的質譜量測 59
4.3.1 標準樣本量測 59
4.3.2 天然物樣本量測 61
4.4 運用壓電發電器電暈放電的質譜量測 63
4.4.1 標準樣本量測 63
4.4.2 天然物樣本量測 66
4.4.3 結合紙層析量測 68
第五章結論與未來展望 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73
自述 77
[1]J. Beran and L. Kevan, "Molecular electron ionization cross sections at 70 eV," The Journal of Physical Chemistry, vol. 73, pp. 3866-3876, 1969.
[2]M. S. Munson and F.-H. Field, "Chemical ionization mass spectrometry. I. General introduction," Journal of the American Chemical Society, vol. 88, pp. 2621-2630, 1966.
[3]M. Barber, R. S. Bordoli, R. D. Sedgwick, and A. N. Tyler, "Fast atom bombardment of solids (FAB): A new ion source for mass spectrometry," Journal of the Chemical Society, Chemical Communications, pp. 325-327, 1981.
[4]E. W. Müller, "Field desorption," Physical Review, vol. 102, p. 618, 1956.
[5]R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, "Ambient mass spectrometry," Science, vol. 311, pp. 1566-1570, 2006.
[6]M. Dole, L. Mack, R. Hines, R. Mobley, L. Ferguson, and M. d. Alice, "Molecular beams of macroions," The Journal of Chemical Physics, vol. 49, pp. 2240-2249, 1968.
[7]M. Yamashita and J. B. Fenn, "Electrospray ion source. Another variation on the free-jet theme," The Journal of Physical Chemistry, vol. 88, pp. 4451-4459, 1984.
[8]E. Horning, M. Horning, D. Carroll, I. Dzidic, and R. Stillwell, "New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure," Analytical Chemistry, vol. 45, pp. 936-943, 1973.
[9]E. Horning, D. Carroll, I. Dzidic, K. Haegele, M. Horning, and R. Stillwell, "Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream," Journal of Chromatographic Science, vol. 12, pp. 725-729, 1974.
[10]A. Venter, M. Nefliu, and R. G. Cooks, "Ambient desorption ionization mass spectrometry," TrAC Trends in Analytical Chemistry, vol. 27, pp. 284-290, 2008.
[11]C. Huan-Wen, H. Bin, and X. ZhANG, "Principle and application of ambient mass spectrometry for direct analysis of complex samples," Chinese Journal of Analytical Chemistry, vol. 38, pp. 1069-1088, 2010.
[12]Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, "Mass spectrometry sampling under ambient conditions with desorption electrospray ionization," Science, vol. 306, pp. 471-473, 2004.
[13]Z. Takats, J. M. Wiseman, and R. G. Cooks, "Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology," Journal of Mass Spectrometry, vol. 40, pp. 1261-1275, 2005.
[14]R. B. Cody, J. A. Laramée, and H. D. Durst, "Versatile new ion source for the analysis of materials in open air under ambient conditions," Analytical Chemistry, vol. 77, pp. 2297-2302, 2005.
[15]J. Hajslova, T. Cajka, and L. Vaclavik, "Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis," TrAC Trends in Analytical Chemistry, vol. 30, pp. 204-218, 2011.
[16]R. A. Musah, R. B. Cody, A. J. Dane, A. L. Vuong, and J. R. Shepard, "Direct analysis in real time mass spectrometry for analysis of sexual assault evidence," Rapid Communications in Mass Spectrometry, vol. 26, pp. 1039-1046, 2012.
[17]L. V. Ratcliffe, F. J. Rutten, D. A. Barrett, T. Whitmore, D. Seymour, C. Greenwood, et al., "Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry," Analytical Chemistry, vol. 79, pp. 6094-6101, 2007.
[18]J. A. Rees, D. L. Seymour, C. L. Greenwood, Y. A. Gonzalvo, and D. T. Lundie, "Mass and energy spectrometry of atmospheric pressure plasmas," Plasma Processes and Polymers, vol. 7, pp. 92-101, 2010.
[19]J. D. Harper, N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, and Z. Ouyang, "Low-temperature plasma probe for ambient desorption ionization," Analytical Chemistry, vol. 80, pp. 9097-9104, 2008.
[20]A. U. Jackson, J. F. Garcia-Reyes, J. D. Harper, J. S. Wiley, A. Molina-Díaz, Z. Ouyang, et al., "Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry," Analyst, vol. 135, pp. 927-933, 2010.
[21]J. F. García‐Reyes, F. Mazzoti, J. D. Harper, N. A. Charipar, S. Oradu, Z. Ouyang, et al., "Direct olive oil analysis by low‐temperature plasma (LTP) ambient ionization mass spectrometry," Rapid communications in mass spectrometry, vol. 23, pp. 3057-3062, 2009.
[22]J. F. Garcia-Reyes, J. D. Harper, G. A. Salazar, N. A. Charipar, Z. Ouyang, and R. G. Cooks, "Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry," Analytical Chemistry, vol. 83, pp. 1084-1092, 2010.
[23]J. S. Wiley, J. T. Shelley, and R. G. Cooks, "Handheld low-temperature plasma probe for portable “point-and-shoot” ambient ionization mass spectrometry," Analytical Chemistry, vol. 85, pp. 6545-6552, 2013.
[24]N. Na, M. Zhao, S. Zhang, C. Yang, and X. Zhang, "Development of a dielectric barrier discharge ion source for ambient mass spectrometry," Journal of the American Society for Mass Spectrometry, vol. 18, pp. 1859-1862, 2007.
[25]H. Hayen, A. Michels, and J. Franzke, "Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry," Analytical Chemistry, vol. 81, pp. 10239-10245, 2009.
[26]H. Wang, W. Sun, J. Zhang, X. Yang, T. Lin, and L. Ding, "Desorption corona beam ionization source for mass spectrometry," Analyst, vol. 135, pp. 688-695, 2010.
[27]H. Wang, Y. Wu, B. Guo, W. Sun, L. Ding, and B. Chen, "Quantification of low-polar small molecules using room temperature ionic liquids matrix-assisted desorption corona beam ionization," Analyst, vol. 137, pp. 3982-3988, 2012.
[28]X. Li, H. Wang, W. Sun, and L. Ding, "Desorption corona beam ionization coupled with a poly (dimethylsiloxane) substrate: broadening the application of ambient ionization for water samples," Analytical Chemistry, vol. 82, pp. 9188-9193, 2010.
[29]Y.-Q. Huang, J.-Q. You, J. Zhang, W. Sun, L. Ding, and Y.-Q. Feng, "Coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry for rapid analysis of chlorphenamine in herbal medicines and dietary supplements," Journal of Chromatography A, vol. 1218, pp. 7371-7376, 2011.
[30]W. P. Mason, "Piezoelectricity, its history and applications," The Journal of the Acoustical Society of America, vol. 70, pp. 1561-1566, 1981.
[31]R. Arshadi and R. S. Cobbold, "A pioneer in the development of modern ultrasound: Robert William Boyle (1883–1955)," Ultrasound in medicine & biology, vol. 33, pp. 3-14, 2007.
[32]R. W. Wood, R. Williams, and A. L. Loomis. "XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity." The London, Edinburgh, and Dublin philosophical magazine and journal of science, 4.22 (1927): 417-436.
[33]W. G. Cady, "The piezo-electric resonator," Radio Engineers, Proceedings of the Institute of, vol. 10, pp. 83-114, 1922.
[34]Y. P. Raizer and J. E. Allen, Gas discharge physics vol. 2: Springer Berlin, 1997.
[35]A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on, Plasma Science, vol. 26, pp. 1685-1694, 1998.
[36]J. Evans, "An interbubble fracture mechanism of blister formation on helium-irradiated metals," Journal of Nuclear Materials, vol. 68, pp. 129-140, 1977.
[37]R. van Rooij, J. Borbely, J. Simonet, M. Hoogerland, K. Eikema, R. Rozendaal, et al., "Frequency metrology in quantum degenerate helium," in Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), 2011, 2011, pp. 1082-1083.
[38]J. C. Eijkel, H. Stoeri, and A. Manz, "An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector," Journal of Analytical Atomic Spectrometry, vol. 15, pp. 297-300, 2000.
[39]B. Jaffe, Piezoelectric ceramics vol. 3: Elsevier, 2012.
[40]D.-I. E. G. Gautschi, Piezoelectric sensors: Springer, 2002.
[41]J. Gallego-Juarez, "Piezoelectric ceramics and ultrasonic transducers," Journal of Physics E: Scientific Instruments, vol. 22, p. 804, 1989.
[42]T. Karaki, K. Yan, and M. Adachi, "Barium titanate piezoelectric ceramics manufactured by two-step sintering," Japanese Journal of Applied Physics, vol. 46, p. 7035-7038, 2007.
[43]A. Von Hippel, "Ferroelectricity, domain structure, and phase transitions of barium titanate," Reviews of Modern Physics, vol. 22, p. 221, 1950.
[44]B. Jaffe, R. Roth, and S. Marzullo, "Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics," Journal of Applied Physics, vol. 25, pp. 809-810, 1954.
[45]B. Jaffe, R. Roth, and S. Marzullo, "Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate," Journal of Research of the National Bureau of Standards, vol. 55, pp. 239-254, 1955.
[46]H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)," Japanese Journal of Applied Physics, vol. 8, p. 975-976, 1969.
[47]周卓明, "壓電力學 (Piezoelectricity Mechanics)," 全華科技圖書股份有限公司, 民國 92 年, 2003.
[48]L. Ettre and K. Sakodynskii, "MS Tswett and the discovery of chromatography II: Completion of the development of chromatography (1903–1910)," Chromatographia, vol. 35, pp. 329-338, 1993.
[49]I. E. Bush, "Methods of paper chromatography of steroids applicable to the study of steroids in mammalian blood and tissues," Biochemical Journal, vol. 50, p. 370-378, 1952.
[50]G. Toennies and J. J. Kolb, "Techniques and reagents for paper chromatography," Analytical Chemistry, vol. 23, pp. 823-826, 1951.
[51]A. Levy and D. Chung, "Two-dimensional chromatography of amino acids on buffered papers," Analytical Chemistry, vol. 25, pp. 396-399, 1953.
[52]R. Guchardi and P. C. Hauser, "Capacitively coupled microplasma for on-column detection of chromatographically separated inorganic gases by optical emission spectrometry," Journal of Chromatography A, vol. 1033, pp. 333-338, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔