(3.230.143.40) 您好!臺灣時間:2021/04/21 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何彥廷
研究生(外文):Yen-ting Ho
論文名稱:三維晶格波茲曼法模擬加熱水平圓柱上方之自然對流
論文名稱(外文):3-D lattice Boltzmann simulations of the free convection above a heated horizontal cylinder
指導教授:林洸銓
指導教授(外文):Kuang C. Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:105
中文關鍵詞:複雜幾何形狀自然對流內部柱體晶格波茲曼法立方腔體
外文關鍵詞:Cubical enclosureIneer cylinderNatural convectionComplex geometryLattice Boltzmann method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,吾人使用熱晶格波茲曼法來模擬立方腔體中含有一可改變位置之加熱圓柱其產生之自然對流的情形,所研究之雷利數範圍為10^4 ~ 10^6 ,普朗特數則固定為0.7,圓柱的位置沿著正立方腔體的中心線上下移動,藉此研究並分析其從暫態到穩態的完整熱傳過程。我們發現正立方腔體之邊界對熱傳還有流體流動的現象造成之影響除了跟圓柱所放置的位置有關,也與雷利數的大小有密切的關係,詳細的分析包含三維流線、溫度場分析和紐森數的分布。最後,我們試著去分析三維的模擬結果跟二維的模擬結果的差異,並探討其可能的原因,最終我們可以利用此研究的結果,來決定高雷利數的情況下是否應該使用三維的模擬。
In the present study, the thermal lattice Boltzmann scheme is used for simulating the natural convection in cubical enclosure with different inner cylinder position in different Rayleigh numbers of 10^4 ~ 10^6 at Prandtl number of 0.7. The location of the inner cylinder is changed vertically along the centerline of the enclosure. The transient state and steady state results are investigated and analyzed. The effects of the boundary wall on heat transfer and fluid flow in the enclosure depend on both the position of the cylinder and the Rayleigh number. Detailed discussion for the streamline, isotherms, and Nusselt number distribution is presented in this paper.
[論文審定書 i]
[誌謝 ii]
[中文摘要 iii]
[ABSTRACT iv]
[CONTENTS v]
[LIST OF FIGURES vii]
[LIST OF TABLES xi]
[NOMENCLATURE xii]

[CHAPTER 1 INTRODUCTION 1]
[CHAPTER 2 THERMAL LATTICE BOLTZMANN METHODS 5]
[2.1 The Boltzmann equation 5]
[2.2 The BGK approximation 6]
[2.3 Equilibrium Distribution Function 10]
[2.4 Lattice Arrangements 11]
[2.5 The Thermal Lattice Boltzmann Method 12]
[2.6 Buoyancy force 14]
[2.7 Implementation of TLBM algorithm 15]
[CHAPTER 3 BOUNDARY CONDITIONS 16]
[3.1 Wall Boundary Conditions 16]
[3.2 Open Inlet Zou-He Pressure and Velocity boundary condition 18]
[3.3 Thermal Boundary Conditions 23]
[CHAPTER 4 VALIDATION 25]
[4.1 Natural convection in an enclosed cavity 25]
[CHAPTER 5 SIMULATIONS OF THE FREE CONVECTION ABOVE A HEATED HORIZONTAL CYLINDER 30]
[5.1 Numerical simulation of transient laminar natural convection in a cubical enclosure with inner cylinder 30]
[5.2 The wall effect on natural convection 62]
[5.3 Numerical simulation of natural convection in a cubical enclosure with inner cylinder at different positions 64]
[CHAPTER 6 CONCLUSIONS 85]
[REFERNCE 86]
1.Chen, S. and G.D. Doolen, Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics, 1998. 30(1): p. 329-364.
2.Kang, Q., P.C. Lichtner, and D. Zhang, Lattice Boltzmann pore‐scale model for multicomponent reactive transport in porous media. Journal of Geophysical Research: Solid Earth (1978–2012), 2006. 111(B5).
3.Kang, Q., P.C. Lichtner, and D. Zhang, An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale. Water Resources Research, 2007. 43(12).
4.Succi, S., The Lattice-Boltzmann Equation. 2001: Oxford university press, Oxford.
5.Yu, D., et al., Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences, 2003. 39(5): p. 329-367.
6.Zheng, H., C. Shu, and Y.-T. Chew, A lattice Boltzmann model for multiphase flows with large density ratio. Journal of Computational Physics, 2006. 218(1): p. 353-371.
7.Premnath, K.N. and J. Abraham, Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. Journal of Computational Physics, 2007. 224(2): p. 539-559.
8.Luo, L.-S. and S.S. Girimaji, Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Physical Review E, 2003. 67(3): p. 036302.
9.Aidun, C.K. and J.R. Clausen, Lattice-Boltzmann method for complex flows. Annual review of fluid mechanics, 2010. 42: p. 439-472.
10.Nie, X., G.D. Doolen, and S. Chen, Lattice-Boltzmann simulations of fluid flows in MEMS. Journal of Statistical Physics, 2002. 107(1-2): p. 279-289.
11.Niu, X., C. Shu, and Y. Chew, A lattice Boltzmann BGK model for simulation of micro flows. EPL (Europhysics Letters), 2004. 67(4): p. 600.
12.Tang, G., W. Tao, and Y. He, Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Physics of Fluids (1994-present), 2005. 17(5): p. 058101.
13.Zhang, J., Lattice Boltzmann method for microfluidics: models and applications. Microfluidics and Nanofluidics, 2011. 10(1): p. 1-28.
14.Chen, H., et al., Extended Boltzmann kinetic equation for turbulent flows. Science, 2003. 301(5633): p. 633-636.
15.Yu, H., L.-S. Luo, and S.S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model. Computers & Fluids, 2006. 35(8): p. 957-965.
16.Guo, Z. and T. Zhao, Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 2002. 66(3): p. 036304.
17.Pan, C., M. Hilpert, and C. Miller, Lattice‐Boltzmann simulation of two‐phase flow in porous media. Water Resources Research, 2004. 40(1).
18.Pan, C., L.-S. Luo, and C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Computers & fluids, 2006. 35(8): p. 898-909.
19.Alexander, F.J., S. Chen, and J. Sterling, Lattice boltzmann thermohydrodynamics. Physical Review E, 1993. 47(4): p. R2249.
20.Chen, Y., H. Ohashi, and M. Akiyama, Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Physical Review E, 1994. 50(4): p. 2776.
21.McNamara, G.R., A.L. Garcia, and B.J. Alder, Stabilization of thermal lattice Boltzmann models. Journal of Statistical Physics, 1995. 81(1-2): p. 395-408.
22.He, X., S. Chen, and G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit. Journal of Computational Physics, 1998. 146(1): p. 282-300.
23.Lallemand, P. and L.-S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions. Physical review E, 2003. 68(3): p. 036706.
24.Peng, Y., C. Shu, and Y. Chew, Simplified thermal lattice Boltzmann model for incompressible thermal flows. Physical Review E, 2003. 68(2): p. 026701.
25.Shi, Y., T. Zhao, and Z. Guo, Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit. Physical Review E, 2004. 70(6): p. 066310.
26.Guo, Z., et al., Thermal lattice Boltzmann equation for low Mach number flows: decoupling model. Physical Review E, 2007. 75(3): p. 036704.
27.Mei, R., et al., Lattice Boltzmann method for 3-D flows with curved boundary. Journal of Computational Physics, 2000. 161(2): p. 680-699.
28.Mezrhab, A., et al., Double MRT thermal lattice Boltzmann method for simulating convective flows. Physics Letters A, 2010. 374(34): p. 3499-3507.
29.Eggels, J. and J. Somers, Numerical simulation of free convective flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 1995. 16(5): p. 357-364.
30.de Vahl Davis, G., Natural convection of air in a square cavity: a bench mark numerical solution. International Journal for numerical methods in fluids, 1983. 3(3): p. 249-264.
31.Henkes, R. and C. Hoogendoorn, Scaling of the laminar natural-convection flow in a heated square cavity. International journal of heat and mass transfer, 1993. 36(11): p. 2913-2925.
32.Markatos, N.C. and K. Pericleous, Laminar and turbulent natural convection in an enclosed cavity. International Journal of Heat and Mass Transfer, 1984. 27(5): p. 755-772.
33.Valencia, A. and R.L. Frederick, Heat transfer in square cavities with partially active vertical walls. International journal of heat and mass transfer, 1989. 32(8): p. 1567-1574.
34.Hyun, J.M. and J.W. Lee, Numerical solutions for transient natural convection in a square cavity with different sidewall temperatures. International Journal of Heat and Fluid Flow, 1989. 10(2): p. 146-151.
35.Delavar, M.A., M. Farhadi, and K. Sedighi, Effect of the heater location on heat transfer and entropy generation in the cavity using the lattice Boltzmann method. Heat Transfer Research, 2009. 40(6).
36.Moukalled, F. and S. Acharya, Natural convection in the annulus between concentric horizontal circular and square cylinders. Journal of Thermophysics and Heat Transfer, 1996. 10(3): p. 524-531.
37.Kim, B., et al., A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. International Journal of Heat and Mass Transfer, 2008. 51(7): p. 1888-1906.
38.Sasaguchi, K., et al., Transient cooling of water around a cylinder in a rectangular cavity—a numerical analysis of the effect of the position of the cylinder. International journal of heat and mass transfer, 1998. 41(20): p. 3149-3156.
39.Shu, C. and Y. Zhu, Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder. International journal for numerical methods in fluids, 2002. 38(5): p. 429-445.
40.Peng, Y., Y. Chew, and C. Shu, Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method. Physical Review E, 2003. 67(2): p. 026701.
41.Fattahi, E., M. Farhadi, and K. Sedighi, Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus. International journal of thermal sciences, 2010. 49(12): p. 2353-2362.
42.Chan, A. and S. Banerjee, A numerical study of three-dimensional roll cells within rigid boundaries. Journal of Heat Transfer, 1979. 101(2): p. 233-237.
43.Fusegi, T., et al., A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. International Journal of Heat and Mass Transfer, 1991. 34(6): p. 1543-1557.
44.Pallares, J., et al., Natural convection in a cubical cavity heated from below at low Rayleigh numbers. International journal of heat and mass transfer, 1996. 39(15): p. 3233-3247.
45.Ha, M.Y. and M.J. Jung, A numerical study on three-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body. International Journal of Heat and Mass Transfer, 2000. 43(23): p. 4229-4248.
46.Yoon, H., et al., Three-dimensional natural convection in an enclosure with a sphere at different vertical locations. International Journal of Heat and Mass Transfer, 2010. 53(15): p. 3143-3155.
47.Choi, C., et al., Effect of circular cylinder location on three-dimensional natural convection in a cubical enclosure. Journal of Mechanical Science and Technology, 2015. 29(3): p. 1307-1318.
48.Butler, C., D. Newport, and M. Geron, Natural convection experiments on a heated horizontal cylinder in a differentially heated square cavity. Experimental Thermal and Fluid Science, 2013. 44: p. 199-208.
49.Ashjaee, M., et al., Experimental and numerical investigation on free convection from a horizontal cylinder located above an adiabatic surface. Heat Transfer Engineering, 2012. 33(3): p. 213-224.
50.Kuehner, J.P., A. Hamed, and J.D. Mitchell, Experimental investigation of the free convection velocity boundary layer and plume formation region for a heated horizontal cylinder. International Journal of Heat and Mass Transfer, 2015. 82: p. 78-97.
51.Kuehner, J.P., et al., Velocity measurements in the free convection flow above a heated horizontal cylinder. International Journal of Heat and Mass Transfer, 2012. 55(17): p. 4711-4723.
52.Moore, D., et al., Ventilation and internal structure effects on naturally induced flows in a static aircraft wing. Applied Thermal Engineering, 2012. 32: p. 49-58.
53.Peng, Y., C. Shu, and Y. Chew, A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity. Journal of Computational Physics, 2004. 193(1): p. 260-274.
54.Gombosi, T.I., Gaskinetic theory. 1994: Cambridge University Press.
55.Bhatnagar, P.L., E.P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 1954. 94(3): p. 511.
56.He, X. and L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E, 1997. 56(6): p. 6811.
57.Dixit, H. and V. Babu, Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2006. 49(3): p. 727-739.
58.Hou, S., et al., Simulation of cavity flow by the lattice Boltzmann method. Journal of computational physics, 1995. 118(2): p. 329-347.
59.Maier, R.S., R.S. Bernard, and D.W. Grunau, Boundary conditions for the lattice Boltzmann method. Physics of Fluids (1994-present), 1996. 8(7): p. 1788-1801.
60.Mohamad, A.A., Lattice Boltzmann method: fundamentals and engineering applications with computer codes. 2011: Springer Science & Business Media.
61.Noble, D.R., et al., A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids (1994-present), 1995. 7(1): p. 203-209.
62.Zou, Q. and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids (1994-present), 1997. 9(6): p. 1591-1598.
63.Kuznik, F., et al., A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity. International Journal of Heat and Fluid Flow, 2007. 28(5): p. 862-870.
64.Lin, K.C. and A. Violi, Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity. International Journal of Heat and Fluid Flow, 2010. 31(2): p. 236-245.
65.Perumal, D.A. and A.K. Dass, Lattice Boltzmann Simulation of Two-and Three-Dimensional Incompressible Thermal Flows. Heat Transfer Engineering, 2014. 35(14-15): p. 1320-1333.
66.Sidik, N.A.C., N. Azwadi, and S. Syahrullail, A 3D Lattice BGK Scheme for Simulation of Thermal Flow in Cubic Cavity. European Journal of Scientific Research, 2009. 37(1): p. 49-57.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔