(3.236.228.250) 您好!臺灣時間:2021/04/22 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅鈺嵐
研究生(外文):Yu-lan Lo
論文名稱:水中氯胺控制條件之研究
論文名稱(外文):Study of control conditions on chloramine in water
指導教授:樓基中樓基中引用關係
指導教授(外文):Jie-Chung Lou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:薄膜消毒氯胺氨氮次氯酸鈉
外文關鍵詞:ammonia nitrogenmembranedisinfectionchloramineNaOCl
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討氯胺的操作條件與水質監測項目之關係,用於提高水再生之殺菌效果。水再生設計重點在於薄膜系統,而氯胺對生物阻塞影響是薄膜系統設計重點。
本實驗使用瓶杯試驗(jar test)進行所有試驗,利用高、低濃度氨水分別於pH=6、7、8條件下添加適量之次氯酸鈉的,來觀察氯胺之生成與pH之關係,以硫酸與鹽酸調整pH。最後,利用pH與氧化還原電位(ORP)項目來觀察餘氯曲線之變化,找出氯胺生成之控制條件。實驗結果顯示,當氨氮濃度高、低或是pH= 6、7、8條件下,在Cl2與N重量比3.9:1(莫耳比0.76:1)時,氯胺生成濃度最高;在Cl2與N重量比6.4:1(莫耳比1.27:1)時,自由氯(Free chlorine)開始出現。在Cl2與N重量比7.7:1(莫耳比1.52:1)時,氨氮已完全反應完畢,即氯與氨的反應終點。為了考量氯胺生成與避免自由氯產生,因此本試驗將氯胺的警戒點設定為Cl2與N重量比5.1:1(莫耳比1:1),是為防止自由氯(Free chlorine)產生,並以氯胺的最高濃度Cl2與N重量比3.9:1(莫耳比0.76:1)設定為氯胺的最佳控制條件。使用鹽酸(HCl)與硫酸(H2SO4)調整pH,對氯胺的形成無太大影響,因此建議於RO系統前可使用硫酸(H2SO4)調整pH,提高RO系統對水中氨氮之去除效率。RO系統應用時二種限制狀況,建議停止加藥消毒: (1)當原水含低濃度氨氮時,pH小於6.80與ORP大於603.7 mV;(2)當原水含高濃度氨氮時,pH小於6.73與ORP大於625.8 mV。
This study is focused to investigate the relations between operation conditions of chloramine and monitoring items of water quality, and could be used for increasing the efficiency of disinfection on water reusing. The major points of design on water reusing are to consider the optimal operation in membrane systems. The effects of chloramine of biological block on operation of membrane systems are found primarily considered in designing.
In this study the jar tests were used in all tests. The relations between formation of chloramine and pH were observed by using high and low concentrations of ammonia solution reacted with NaOCl solutions added by us under pH = 6, 7, 8 respectively. The levels of pH were adjusted with H2SO4 and HCl in this work. Final step was conducted to study the variations of residual chlorine curves using pH and ORP. This step could obtain the control conditions of chloramine in all tests. The experimental results showed the formatting concentrations of chloramine was the highest in weight ratio 3.9:1 of Cl2/N (molar ratio was 0.76:1) when concentrations of ammonia nitrogen were high or low and pH were set on 6, 7, and 8. The concentrations of free chlorine were started to format in reaction when weight ratio 6.4:1 of Cl2/N (molar ratio was 1.27:1) was set in reaction. The reaction of ammonia nitrogen was finished when weight ratio 7.7:1 of Cl2/N (molar ratio was 1.52:1) conducted in reaction. In this study for considering chloramine formatting and avoiding free chlorine formatting, thus made the alarming point of chloramine was set on weight ratio 5.5 :1 of Cl2/N (molar ratio was 1:1) for avoiding free chlorine formatting, and made the optimal point of chloramine was set on weight ratio 3.95 :1 of Cl2/N (molar ratio was 0.76:1). It was no significant effects on formatting concentrations of chloramine under different pH by adjusting with H2SO4 and HCl in this work. Therefore, H2SO4 was primarily selected to adjust pH of raw water in influent of RO systems. For this way could raise the treatment efficiency of ammonia nitrogen in RO systems. The limited conditions of application were suggested the times for stopping added chemicals in RO systems when two controlling conditions were observed: (1) when low concentrations of ammonia nitrogen in raw water, pH were lower than 6.8 and ORP were larger than 603.7mV; (2) when high concentrations of ammonia nitrogen in raw water, pH were lower than 6.73 and ORP were larger than 625.8mV.
摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 4
2-1消毒劑之比較 4
2-2氯消毒的介紹 5
2-2-1氯的介紹 5
2-2-2 氯消毒機制 6
2-2-3 氯與氨的比例 9
2-2-4 氯消毒對逆滲透膜之影響 12
2-3氯胺 13
2-3-1氯胺的介紹 13
2-3-2氯胺的形成 15
2-3-3氯胺的應用 16
2-4 氧化還原電位(Oxidation-Reduction Potential, Redox Potential) 18
2-4-1 基本原理介紹 18
2-4-2 氧化還原電位的應用 20
2-5 逆滲透膜(Reverse Osmosis) 24
第三章 實驗方法與步驟 25
3-1實驗方法 25
3-2實驗設備與藥品配置 25
3-3實驗步驟 29
第四章 結果與討論 35
4-1 實驗結果以莫耳數討論 35
4-1-1 高濃度(15 mg/L)與低濃度(1.5 mg/L)氨水比較結果 35
4-1-2 鹽酸(HCl)調整pH的實驗情況 39
4-1-3 硫酸(H2SO4)調整pH的實驗情況 42
4-1-4鹽酸(HCl)與硫酸(H2SO4)的結果比較分析 45
4-2 實驗結果以重量比討論 49
4-2-1 高濃度(15 mg/L)與低濃度(1.5 mg/L)氨水比較結果 49
4-2-2 鹽酸(HCl)調整pH的實驗情況 51
4-2-3 硫酸(H2SO4)調整pH的實驗情況 54
4-2-4鹽酸(HCl)與硫酸(H2SO4)的結果比較分析 57
4-3 氧化還原電位(ORP)與pH變化的討論 60
4-4 控制條件 64
4-5 實驗檢討 65
第五章 結論與建議 67
5-1 結論 67
5-2 建議 67
參考文獻 69
附錄A 71
1.經濟部加工出口區管理處、京華工程顧問股份有限公司(2011),楠梓加工區再生水模型廠技術顧問計畫成果報告。
2.林建三(2007),環境工程概論,第七版。
3.石濤(2005),環境化學,第六版。
4.桂学林、梁闯(2011),饮用水消毒技术研究进展综述《能源與環境》第4期。
5.李佳、朱百泉、祝明、高原、杨雅雯(2012),「折点加氯反应在次氯酸鈉消毒中水中的应用」,環境工程學報。
6.肖锦晖、肖惠贞(2004),饮用水消毒剂及其副产物对人体健康的影响,中国消毒学杂志,http://www.cqvip.com/QK/90468A/200401/9834340.html。
7.周鸿、张晓健(2001),「安全消毒技術研究展望」北京清华大学环境工程与科学系。
8.黄翔(2006),「折点加氯及其应用」。
9.貢献、貢畅(2003),污水處理監測中ORP測量及其應用,世界儀表與自動化。
10.陳韬、彭永臻、田文军、高景峰、曾薇(2003),「ORP檢測在水處理中的應用」,中國給水排水。
11.李星、杨艳玲、陈杰、李圭白、何文杰、韩宏大(2005),「预氯胺化助凝助滤效能的研究」,中国土木工程学会水工业分会给水委员会第十次年会暨2005年中日水处理技术交流会。
12.吳聖培(2014),「臭氧-活性碳生物濾床對於消毒副產物生成潛勢之影響 : 以金門太湖淨水廠為例」,碩士論文,國立臺灣大學環境工程研究所。
13.徐偉勵(2014),「飲用水配水系統消毒副產物及二氧化鉛溶鉛之健康風險評估」,碩士論文,國立臺灣大學環境工程研究所。
14.楊雅喬(2014),「苯脲系除草劑經消毒程序生成新興消毒副產物亞硝胺之研究」,碩士論文,國立中山大學環境工程學系。
15.陳必祥(2012),「利用臭氧與氯消毒水中微生物來探討高級水處理場AOC變化及蓄水池水塔清洗頻率相關性之研究」,博士論文,國立中山大學環境工程研究所。
16.Dow Chemical Company. FILMTEC™ Membranes, Water Chemistry and Pretreatment: Biological Fouling Prevention.
17.Randy Holmes-Farley (2008). Chloramine and the Reef Aquarium.
18.Claudia Wendland and Lavoisier Ndzana, Revised by Dr. Yavuz Özoguz data-quest Suchi&Berg GmbH.WASTEWATER REUSE TECHNOLOGIES.
19.Hach Company(2000), A Specific and Effective Method for Controlling Chloramination of Waters.
20.Jacques M. Steininger(1985), PPM or ORP: Which Should Be Used? .
21.Jacques M. Steininger, D. Eng. Sc. and Catherine Pareja, Eng. Tech. (1996),“ORP SENSOR RESPONSE IN CHLORINATED WATER”.NSPI Water Chemistry Symposium, Phoenix, AZ published in NSPI Symposium Series, Vol. I.
22.A. E. GRIFFIN, PH.B., AND N. S. CHAMBERLIN(1941), Relation of Ammonia-Nitrogen to Break-Point Chlorination, vol. 31.
23.Robert D. McVay(2009), Chloramine Production &Monitoring in Florida’sWater Supply Systems.
24.K.C. Bal Krishna、Arumugam Sathasivan and Dipok Chandra Sarker(2012), “ Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples”, water research 46.
25.Hazen and Sawyer, “The Use of chloramine in RO Reuse Applications”.
26.Shih-Hsiang Chien(2012), “Use of chlorine, chloramine, or chlorine dioxide to control biological growth in power plant recirculating cooling systems using treated municipal wastewater”.
27.Michael Koza(2010), “Science of Chloramination”, Maine Water Utilities Association.
28.Matthew A. Brooks(1999),Breakpoint chlorination as an alternate means of ammonia-nitrogen removal at a water reclamation plant.
29.Simon Breese(2012), “ Factors Affecting the Biological Removal of Ammonia”, The World’s Water Event, American Water Works Association ACE12.
30.Course manual(2007), “Process control for systems using chloramines”.
31.US EPA, “Chloramines in Drinking Water”(2012),Retrieved November 22, 2015, from http://water.epa.gov/lawsregs/rulesregs/sdwa/mdbp/chloramines_index.cfm
32.United States Environmental Protection Agency (EPA). Drinking Water Requirements for States and Public Water Systems, Retrieved may 20, 2016, from http://water.epa.gov/lawsregs/rulesregs/sdwa/mdbp/chloramines_index.cfm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔