|
1. Abdel-Aal, R. E., and A. Z. AlGarni, “Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis,” Energy, 22(11), 1059-1069(1997). 2. Aggarwal, S., R. Garg and P. Goswami, “A review paper on different encoding schemes used in genetic algorithms,” International Journal of Advanced Research in Computer Science and Software Engineering, 4(1), 596-600(2014). 3. Azadeh, A., S. F. Ghaderi and S. Sohrabkhani, “Forecasting electrical consumption by integration of neural network, time series and ANOVA,” Applied Mathematics and Computation, 186(2), 1753-1761(2007). 4. Bakirtzis, A. G.,V. Petridis, S. J. Kiartzis and M.C. Alexiadis, “A neural network short term load forecasting model for the Greek power system,” Power Systems, 11(2), 858-863 (1996). 5. Barakat, E. H, “Modeling of non-stationary time-series data. Part II. Dynamic periodic trends,” International Journal of Electrical Power & Energy Systems, 23(1), 63-68(2001). 6. Deep, K. and M. Thakur, “A new crossover operator for real coded genetic algorithms,” Applied Mathematics and Computation, 188(1), 895-911(2007). 7. Deep, K. and M. Thakur, “A new mutation operator for real coded genetic algorithms,” Applied mathematics and Computation, 193(1), 211-230(2007). 8. Deep, K., K. P. Singh, M. L. Kansal and C. Mohan, “A real coded genetic algorithm for solving integer and mixed integer optimization problems,” Applied Mathematics and Computation, 212(2), 505-518(2009). 9. Ghiassi, M. D., K. Z. David, K. Zimbra and H. Saidane, “Medium term system load forecasting with a dynamic artificial neural network model,” Electric Power Systems Research, 76(5), 302-316(2006). 10. Goldberg, D.E. and K. Deb, “A comparison of selection schemes used in genetic algorithms,” Foundations of Genetic Algorithms, 1(1), 69–93(1991). 11. González-Romera, E., M. A. Jaramillo-Moran and D. Carmona-Fernandez, “Monthly electric energy demand forecasting based on trend extraction,” Power Systems, 21(4), 1946-1953(2006). 12. González-Romera, E., M. A. Jaramillo-Morán, and D. Carmona-Fernández, “Monthly electric energy demand forecasting with neural networks and Fourier series,” Energy Conversion and Management, 49(11), 3135-3142(2008). 13. Gross, G. and F. D. Galiana, “Short-term load forecasting,” Proceedings of the IEEE, 75(12), 1558-1573(1987). 14. Hippert, H. S., C. E. Pedreira and R. C. Souza, “Neural networks for short-term load forecasting: A review and evaluation,” Power Systems, 16(1), 44-55(2001). 15. Holland, J. H. and J. S. Reitman, “Cognitive systems based on adaptive algorithms,” ACM SIGART Bulletin, 63, 49-49(1977). 16. Hor, C.-L., Simon J. Watson and S. Majithia, “Analyzing the impact of weather variables on monthly electricity demand,” Power Systems, 20(4), 2078-2085(2005). 17. Infield, D. G. and D. C. Hill, “Optimal smoothing for trend removal in short term electricity demand forecasting,” Power Systems, 13(3), 1115-1120 (1998). 18. Lee, K. Y., Y. T. Cha and J. H. Park, “Short-term load forecasting using an artificial neural network,” Power Systems, 7(1), 124-132(1992). 19. Leshno, M., V. Y. Lin, A. Pinkus and S. Schocken, “Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,” Neural networks, 6(6), 861-867(1993). 20. Metaxiotis, K., A. Kagiannas, D. Askounis and J. Psarras, “Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher,” Energy Conversion and Management, 44(9), 1525-1534(2003). 21. Mirasgedis, S., Y. Sarafidis, E. Georgopoulou, D.P. Lalas, M. Moschovits, F. Karagiannis and D. Papa-konstantinou, “Models for mid-term electricity demand forecasting incorporating weather influences,” Energy, 31(2), 208-227(2006). 22. Moghram, I. S. and S. Rahman, “Analysis and evaluation of five short-term load forecasting techniques,” Power Systems, 4(4), 1484-1491(1989). 23. Moré, J. J. “The Levenberg-Marquardt algorithm: implementation and theory,” Numerical analysis, 105-116(1978). 24. Papalexopoulos, A. D. and T. C. Hesterberg, “A regression-based approach to short-term system load forecasting,” Power Systems, 5(4), 1535-1547(1990). 25. Rahman, S. and R. Bhatnagar, “An expert system based algorithm for short term load forecast,” Power Systems, 3(2), 392-399(1988). 26. Rumelhart, D. E., G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” CALIFORNIA UNIV SAN DIEGO LA JOLLA INST FOR COGNITIVE SCIENCE, No. ICS-8506, (1985). 27. Szkuta, B. R., L. A. Sanabria and T. S. Dillon, “Electricity price short-term forecasting using artificial neural networks,” Power Systems, 14(3), 851-857(1999). 28. White, D. and P. Ligomenides, “GANNet: A genetic algorithm for optimizing topology and weights in neural network design,” New Trends in Neural Computation, 322-327(1993). 29. Zhao, S. and G. W. Wei, “Jump process for the trend estimation of time series,” Computational Statistics & Data Analysis, 42(1), 219-241(2003).
|