|
Chapter 4 References 1. Pan, M., et al., Composite Poly(vinylidene fluoride)/Polystyrene Latex Particles for Confined Crystallization in 180 nm Nanospheres via Emulsifier-Free Batch Seeded Emulsion Polymerization. Macromolecules, 2014. 47(8): p. 2632-2644. 2. Lin, M.-C., B. Nandan, and H.-L. Chen, Mediating polymer crystal orientation using nanotemplates from block copolymer microdomains and anodic aluminium oxide nanochannels. Soft Matter, 2012. 8(28): p. 7306-7322. 3. Wang, H., et al., Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies. Science, 2009. 323(5915): p. 757-760. 4. Wang, H., et al., Confined Crystallization of PEO in Nanolayered Films Impacting Structure and Oxygen Permeability. Macromolecules, 2009. 42(18): p. 7055-7066. 5. Blaszczyk-Lezak, I., M. Hernández, and C. Mijangos, One Dimensional PMMA Nanofibers from AAO Templates. Evidence of Confinement Effects by Dielectric and Raman Analysis. Macromolecules, 2013. 46(12): p. 4995-5002. 6. Sun, L., et al., Comparison of crystallization kinetics in various nanoconfined geometries. Polymer, 2004. 45(9): p. 2931-2939. 7. Beaudoin, E., et al., Effect of Interfaces on the Melting of PEO Confined in Triblock PS-b-PEO-b-PS Copolymers. Langmuir, 2013. 29(34): p. 10874-10880. 8. Shin, K., et al., Crystalline Structures, Melting, and Crystallization of Linear Polyethylene in Cylindrical Nanopores. Macromolecules, 2007. 40(18): p. 6617-6623. 9. García-Gutiérrez, M.-C., et al., Confinement-Induced One-Dimensional Ferroelectric Polymer Arrays. Nano Letters, 2010. 10(4): p. 1472-1476. 10. Maiz, J., J. Martin, and C. Mijangos, Confinement Effects on the Crystallization of Poly(ethylene oxide) Nanotubes. Langmuir, 2012. 28(33): p. 12296-12303. 11. Hou, P., H. Fan, and Z. Jin, Spiral and Mesoporous Block Polymer Nanofibers Generated in Confined Nanochannels. Macromolecules, 2015. 48(1): p. 272-278. 12. Luo, Y., et al., Dynamic Interactions between Poly(3-hexylthiophene) and Single-Walled Carbon Nanotubes in Marginal Solvent. The Journal of Physical Chemistry B, 2014. 118(22): p. 6038-6046. 13. Martin, C.R., Nanomaterials--a membrane-based synthetic approach. 1994, DTIC Document. 14. Martin, C.R., Template Synthesis of Electronically Conductive Polymer Nanostructures. Accounts of Chemical Research, 1995. 28(2): p. 61-68. 15. Grimm, S., et al., Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes via Cross-Linked Polyacrylate Nanofiber Arrays. Nano Letters, 2008. 8(7): p. 1954-1959. 16. Grimm, S., et al., Nondestructive Mechanical Release of Ordered Polymer Microfiber Arrays from Porous Templates. Small, 2007. 3(6): p. 993-1000. 17. Furneaux, R.C., W.R. Rigby, and A.P. Davidson, The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature, 1989. 337(6203): p. 147-149. 18. Goh, C., K.M. Coakley, and M.D. McGehee, Nanostructuring Titania by Embossing with Polymer Molds Made from Anodic Alumina Templates. Nano Letters, 2005. 5(8): p. 1545-1549. 19. Baek, S., et al., A facile method to prepare regioregular poly (3-hexylthiophene) nanorod arrays using anodic aluminium oxide templates and capillary force. New Journal of Chemistry, 2009. 33(5): p. 986-990. 20. Foss, C.A., M.J. Tierney, and C.R. Martin, Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory. The Journal of Physical Chemistry, 1992. 96(22): p. 9001-9007. 21. Martin, C.R., Membrane-Based Synthesis of Nanomaterials. Chemistry of Materials, 1996. 8(8): p. 1739-1746. 22. Choi, M.K., et al., Simple Fabrication of Asymmetric High-Aspect-Ratio Polymer Nanopillars by Reusable AAO Templates. Langmuir, 2011. 27(6): p. 2132-2137. 23. Kim, D., et al., Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsystem Technologies, 2007. 13(5-6): p. 601-606. 24. Blaszczyk-Lezak, I., et al., Monitoring the Thermal Elimination of Infiltrated Polymer from AAO Templates: An Exhaustive Characterization after Polymer Extraction. Industrial & Engineering Chemistry Research, 2011. 50(18): p. 10883-10888. 25. Masuda, H. and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 1995. 268(5216): p. 1466-1468. 26. Hideki, M., Y. Kouichi, and O. Atsushi, Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution. Japanese Journal of Applied Physics, 1998. 37(11A): p. L1340. 27. Nielsch, K., et al., Self-ordering Regimes of Porous Alumina: The 10 Porosity Rule. Nano Letters, 2002. 2(7): p. 677-680. 28. Dersch, R., et al., Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers for Advanced Technologies, 2004. 16(2‐3): p. 276-282. 29. Steinhart, M., et al., Polymer Nanotubes by Wetting of Ordered Porous Templates. Science, 2002. 296(5575): p. 1997. 30. Noirez, L., et al., What Happens to Polymer Chains Confined in Rigid Cylindrical Inorganic (AAO) Nanopores. Macromolecules, 2013. 46(12): p. 4932-4936. 31. Hu, J., et al., Template method for fabricating interdigitate p-n heterojunction for organic solar cell. Nanoscale Research Letters, 2012. 7(1): p. 1-5. 32. Guan, Y., et al., Enhanced Crystallization from the Glassy State of Poly(l-lactic acid) Confined in Anodic Alumina Oxide Nanopores. Macromolecules, 2015. 48(8): p. 2526-2533. 33. Cho, Y., C. Lee, and J. Hong, Pore size effect on the formation of polymer nanotubular structures within nanoporous templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: p. 195-200. 34. Ko, H.-W., et al., Fabrication of Multicomponent Polymer Nanostructures Containing PMMA Shells and Encapsulated PS Nanospheres in the Nanopores of Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2015. 36(5): p. 439-446. 35. Iacopino, D., et al., Highly Polarized Luminescence from β-Phase-Rich Poly(9,9-dioctylfluorene) Nanofibers. The Journal of Physical Chemistry A, 2014. 118(29): p. 5437-5442. 36. Li, L., et al., Glass Transitions of Poly(methyl methacrylate) Confined in Nanopores: Conversion of Three- and Two-Layer Models. The Journal of Physical Chemistry B, 2015. 119(15): p. 5047-5054. 37. Michell, R.M., et al., The Crystallization of Confined Polymers and Block Copolymers Infiltrated Within Alumina Nanotube Templates. Macromolecules, 2012. 45(3): p. 1517-1528. 38. Martín, J., et al., High-Aspect-Ratio and Highly Ordered 15-nm Porous Alumina Templates. ACS Applied Materials & Interfaces, 2013. 5(1): p. 72-79. 39. Vohra, V., et al., Organic solar cells based on nanoporous P3HT obtained from self-assembled P3HT: PS templates. Journal of Materials Chemistry, 2012. 22(37): p. 20017-20025. 40. Martín-González, M., et al., High-Density 40 nm Diameter Sb-Rich Bi2–xSbxTe3 Nanowire Arrays. Advanced Materials, 2003. 15(12): p. 1003-1006. 41. Martín-González, M., et al., Electrodeposition of Bi1-xSbx Films and 200-nm Wire Arrays from a Nonaqueous Solvent. Chemistry of Materials, 2003. 15(8): p. 1676-1681. 42. Martín-González, M., et al., Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays. Nano Letters, 2003. 3(7): p. 973-977. 43. Martín, J., et al., Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications. Polymer, 2012. 53(6): p. 1149-1166. 44. Steinhart, M., Supramolecular organization of polymeric materials in nanoporous hard templates, in Self-Assembled Nanomaterials II. 2008, Springer. p. 123-187. 45. Sirringhaus, H., et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999. 401(6754): p. 685-688. 46. Yang, X. and J. Loos, Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control. Macromolecules, 2007. 40(5): p. 1353-1362. 47. Thompson, B.C., et al., Influence of Alkyl Substitution Pattern in Thiophene Copolymers on Composite Fullerene Solar Cell Performance. Macromolecules, 2007. 40(21): p. 7425-7428. 48. Forzani, E.S., et al., A Conducting Polymer Nanojunction Sensor for Glucose Detection. Nano Letters, 2004. 4(9): p. 1785-1788. 49. Cannon, J.P., S.D. Bearden, and S.A. Gold, Effect of wetting solvent on poly(3-hexylthiophene) (P3HT) nanotubles fabricated via template wetting. Synthetic Metals, 2010. 160(23–24): p. 2623-2627. 50. Kim, K., et al., Poly(3-hexylthiophene)/Multiwalled Carbon Hybrid Coaxial Nanotubes: Nanoscale Rectification and Photovoltaic Characteristics. ACS Nano, 2010. 4(7): p. 4197-4205. 51. Samitsu, S., et al., Field-Effect Carrier Transport in Poly(3-alkylthiophene) Nanofiber Networks and Isolated Nanofibers. Macromolecules, 2010. 43(19): p. 7891-7894. 52. Cho, S.I., et al., Nanotube-Based Ultrafast Electrochromic Display. Advanced Materials, 2005. 17(2): p. 171-175. 53. Crossland, E.J.W., et al., Anisotropic Charge Transport in Spherulitic Poly(3-hexylthiophene) Films. Advanced Materials, 2012. 24(6): p. 839-844. 54. DeLongchamp, D.M., et al., Variations in Semiconducting Polymer Microstructure and Hole Mobility with Spin-Coating Speed. Chemistry of Materials, 2005. 17(23): p. 5610-5612. 55. Kim, J.S., et al., Poly(3-hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics. Advanced Functional Materials, 2010. 20(4): p. 540-545. 56. Byun, J., et al., Ultrahigh Density Array of Free-Standing Poly(3-hexylthiophene) Nanotubes on Conducting Substrates via Solution Wetting. Macromolecules, 2011. 44(21): p. 8558-8562. 57. Martín, J., et al., Poly (3-hexylthiophene) nanowires in porous alumina: internal structure under confinement. Soft Matter, 2014. 10(18): p. 3335-3346. 58. Martín, J., A. Nogales, and M. Martín-González, The Smectic–Isotropic Transition of P3HT Determines the Formation of Nanowires or Nanotubes into Porous Templates. Macromolecules, 2013. 46(4): p. 1477-1483. 59. Li, G., et al., " Solvent annealing" effect in polymer solar cells based on poly (3-hexylthiophene) and methanofullerenes. Advanced Functional Materials, 2007. 17(10): p. 1636. 60. Yang, H., et al., Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors. Advanced Functional Materials, 2005. 15(4): p. 671-676. 61. Chang, J.-F., et al., Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials, 2004. 16(23): p. 4772-4776. 62. Huang, L.-B., et al., Poly(3-hexylthiophene) Nanotubes with Tunable Aspect Ratios and Charge Transport Properties. ACS Applied Materials & Interfaces, 2014. 6(15): p. 11874-11881. 63. Kang, S.-J., et al., Conjugated Polymer Chain and Crystallite Orientation Induced by Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces, 2013. 5(18): p. 9043-9050. 64. Johnston, D.E., et al., Nanostructured Surfaces Frustrate Polymer Semiconductor Molecular Orientation. ACS Nano, 2014. 8(1): p. 243-249. 65. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub‐25 nm vias and trenches in polymers. Applied Physics Letters, 1995. 67(21): p. 3114-3116. 66. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, 25-nanometer resolution. Science272, 1996: p. 85-87. 67. Guo, L.J., Nanoimprint Lithography: Methods and Material Requirements. Advanced Materials, 2007. 19(4): p. 495-513. 68. Ding, G., et al., Solvent-Assistant Room Temperature Nanoimprinting-Induced Molecular Orientation in Poly(3-hexylthiophene) Nanopillars. Macromolecules, 2013. 46(21): p. 8638-8643. 69. Aryal, M., K. Trivedi, and W. Hu, Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography. ACS Nano, 2009. 3(10): p. 3085-3090. 70. Hlaing, H., et al., Nanoimprint-Induced Molecular Orientation in Semiconducting Polymer Nanostructures. ACS Nano, 2011. 5(9): p. 7532-7538. 71. Chen, D., W. Zhao, and T.P. Russell, P3HT Nanopillars for Organic Photovoltaic Devices Nanoimprinted by AAO Templates. ACS Nano, 2012. 6(2): p. 1479-1485. 72. Ihn, K.J., J. Moulton, and P. Smith, Whiskers of poly(3-alkylthiophene)s. Journal of Polymer Science Part B: Polymer Physics, 1993. 31(6): p. 735-742. 73. Berson, S., et al., Poly(3-hexylthiophene) Fibers for Photovoltaic Applications. Advanced Functional Materials, 2007. 17(8): p. 1377-1384. 74. Li, L., G. Lu, and X. Yang, Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. Journal of Materials Chemistry, 2008. 18(17): p. 1984-1990. 75. Li, L., et al., Poly(3-hexylthiophene) nanofiber networks for enhancing the morphology stability of polymer solar cells. Organic Electronics, 2013. 14(5): p. 1383-1390. 76. Gurau, M.C., et al., Measuring Molecular Order in Poly(3-alkylthiophene) Thin Films with Polarizing Spectroscopies. Langmuir, 2007. 23(2): p. 834-842. 77. Yamamoto, T., et al., Extensive Studies on π-Stacking of Poly(3-alkylthiophene-2,5-diyl)s and Poly(4-alkylthiazole-2,5-diyl)s by Optical Spectroscopy, NMR Analysis, Light Scattering Analysis, and X-ray Crystallography. Journal of the American Chemical Society, 1998. 120(9): p. 2047-2058. 78. Yang, X., et al., Crystalline Organization of a Methanofullerene as Used for Plastic Solar-Cell Applications. Advanced Materials, 2004. 16(9-10): p. 802-806. 79. Chen, C.-Y., et al., Formation and Thermally-Induced Disruption of Nanowhiskers in Poly(3-hexylthiophene)/Xylene Gel Studied by Small-Angle X-ray Scattering. Macromolecules, 2010. 43(17): p. 7305-7311.
|