跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林易德
研究生(外文):Yih-Der Lin
論文名稱:具高耐候性及耐熱老化性之TPEE研究
論文名稱(外文):Improvement of thermal stability of thermoplastic polyether-ester elastomer
指導教授:堀江正樹
指導教授(外文):Masaki Horie
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:38
中文關鍵詞:熱塑性彈性體添加劑耐熱性
外文關鍵詞:Thermoplastic polyether-ester elastomer (TPEE)AdditivesThermal stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:620
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究中,將熱塑性彈性體(TPEE)混合選用的數種添加劑,以提升TPEE的耐熱老化性。以下添加劑被選作添加劑使用:雙丁基氫氧甲苯(BHT)、四(3,5-二叔丁基-4-羥基)苯丙酸季戊四醇酯(抗氧化劑1010)、丁基羥基苯甲醚(BHA)、第三丁基氫醌(TBHQ)、沒食子酸丙酯(PrG)、4-羥基苯甲酸、二叔丁基-4-羥基苯基丙酸十八碳醇酯(抗氧化劑1076)、三(2,4-二叔丁基)亞磷酸苯酯(抗氧化劑168)、4,4'-雙(α, α-二甲基芐基)二苯胺(NG 445)、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羥基苯甲基)苯(抗氧化劑330)、N,N’-雙-(3-(3,5-二叔丁基-4-羥基苯基)丙醯基)己二胺(抗氧化劑1098)、四(2,4-二叔丁基酚)-4,4'-聯苯基二亞磷酸酯(PEPQ), 季戊四醇四(β-月桂硫代丙酸酯)(412S)及2,2'-亞甲基雙(4,6-二叔丁基苯基)-2-乙基己基磷酸(HP10)
首先TPEE顆粒溶於78 °C氯仿溶劑,並加入1.0重量百分濃度的添加劑進行混合,並於常溫下置於培養皿中自然乾燥,製造後續實驗所須的薄膜樣本。
所有薄膜樣本依序進行紫外/可見光吸收光譜(UV-vis)、熱重分析 (TGA)、差示掃描量熱法(DSC)、X射線光電子能譜(XPS)和萬能拉力試驗的檢測。在UV-vis檢測中,TPEE混合抗氧化劑1010,相對於其他添加劑的樣本,有最佳的耐熱表現,即經過連續七天140 °C高溫加熱後,有最小的色變及最小的400 nm吸收度變化;此外,在多個添加劑混合比較中,抗氧化劑1010與BHT的混合添加劑有最佳表現,但仍比不上單一抗氧化劑1010的結果。在TGA、DSC檢測中,比較各個試驗樣本,TPEE混合抗氧化劑1010及NG 445分別有最高及次高的裂解溫度,且皆高於純TPEE的裂解溫度;另外,所有樣本的熔點皆介於208至210 °C之間,無太大差異。在XPS檢測中,由C1s圖譜可見得,在經過連續七天140 °C加溫後,各樣本皆有特定鍵結斷裂(289 eV能階)的現象發生,而混有抗氧化劑1010的樣本在289 eV能階的峰值變化量最小,顯示抗氧化劑1010可大幅延緩熱老化的鍵結斷裂。在萬能拉力試驗中,混有NG 445的試驗樣本在經過連續七天140 °C加溫後,殘餘相對較高的拉力保留率(73%);但NG 445和抗氧化劑1098的混合添加劑效果更佳,殘餘75%拉力保留率。

In this thesis, efficient additives have been investigated to improve thermal stability of thermoplastic polyether-ester elastomer (TPEE). Butylated butylated hydroxytoluene (BHT), 2,6-di-tert-butyl-4-methylphenol (antioxidant 1010), butylated hydroxyanisole (BHA), tert-butylhydroxyquinone (TBHQ), propyl gallate (PrG), 4-hydroxybenzoic acid, octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (antioxidant 1076), tris(2,4-ditert-butylphenyl) phosphite (antioxidant 168), 4,4’-bis(α,α-dimethylbenzyl)diphenylamine (NG 445), 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene (antioxidant 330), N,N-hexane-1,6-dihylbis[3-(3,5-di-tert-butyl-4-hydroxyphenylpropionamide)] (antioxidant 1098), 4-[4-bis(2,4-ditert-butylphenoxy)phosphanylphenyl]phenyl]-bis(2,4-ditert-butylphenoxy)phosphane (PEPQ), pentaerythritol tetrakis (β-laurylthiopropionate) (412S) and 2,2'-methylenebis(4,6-di-tert-butyl-phenyl)-2-ethylhexyl phosphite (HP10) were selected as additives. TPEE pellets were dissolved in chloroform at 78 °C, and then 1wt% of these additives were added to the solution. The solutions were dried to produce testing films under ambient conditions.
All of the TPEE’s testing films were systematically characterized and analyzed by UV-vis absorption spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and universal tensile testing. In the UV-vis absorption spectra, TPEEs with additives of antioxidant 1010 showed the best thermal stability. It showed less color change and the lowest absorbance at 400 nm compared with other samples after heating at 140 °C for 7 days. Mixture of antioxidant 1010 and BHT showed great performance on UV-vis absorption spectra, but not as good as antioxidant 1010 alone. In the TGA and DSC results, TPEE with additive antioxidant 1010 and NG 445 showed the highest decomposition temperature among all the additives. This is higher than the pure TPEE. Besides all the samples have similar melting point between 208 °C to 210 °C. In the X-ray photoelectron spectroscopy (XPS) analysis, bond cleavage was observed in C 1s spectra after heating at 140 °C for 7 days, and TPEE with antioxidant 1010 showed less peak change on 289.0 eV. This result suggests that the antioxidant 1010 can retard the bond cleavage. In the tensile tests, it was shown that TPEE with the additive NG 445 has a relatively high retention ratio of tensile strength (around 73%). TPEE with the mixture of NG 445 and antioxidant 1098 showed the best retention ratio (around 75%) after heating at 140°C for 7 days.

Abstract I
中文摘要 III
Table of contents IV
Chapter 1. Introduction 1
1.1 Introduction of thermoplastic polyether-ester elastomer (TPEE) 1
1.2 Introduction of plastics additives 2
1.2.1 Mechanism of polymer degradation 2
1.2.2 Mechanism of polymer additives 4
1.3 Introduction of tensile strength measurement 5
1.4 Aim of work 6
Chapter 2. Measurement of thermal stability of Thermoplastic polyether-ester elastomer (TPEE) 7
2.1 General procedures 7
2.1.1 Materials 7
2.1.2 Characterization 9
2.2 Preparation of TPEE film 10
2.3 Optical properties 11
2.4 Thermal properties 16
2.5 XPS measurement 21
2.6 Mechanical tests 27
Chapter 3. Conclusion and Future Work 30
Chapter 4. Appendix 34
References 40

[1] Yagihara, T., et al., Polym., 2012. 4, 1259.
[2] Wang, H.P., et al., Macromol. 2007, 40, 2852–2862.
[3] Poon, B.C., et al.. Appl. Polym. Sci. 2007, 104, 489–499.
[4] Simanke, A.G., et al., J. Appl. Polym. Sci. 1999, 74, 1194–1200.
[5] Nagai, Y., et al., Polym. Degrad. Stab., 1997. 56, 115.
[6] Tabankia, M. H., et al., Polym. Deg. Stab., 1985, 12, 349.
[7] Tabankia, M. H., et al., Polym. Deg. Stab., 1987, 19, 113.
[8] Jiang-Qing, P., et al., Deg. Stab., 1992, 36, 65.
[9] Drobny, J.G., 11 - Thermoplastic Polyether Ester Elastomers, in Handbook of Thermoplastic Elastomers (Second Edition), J.G. Drobny, Editor. 2014, William Andrew Publishing: Oxford. p. 271.
[10] Adams R.K., Hoeschelle GK, Witsiepe WK. In:Legge NR, Holden G, Schroeder HE, editors. Thermoplastic elastomers, a comprehensive review. Munich: Hanser Publishers; 1987. p. 164.
[11] Adams RK, Hoeschelle GK, Witsiepe WK. In: Holden G, Kricheldorf HR, Quirk RP, editors. Thermoplastic elastomers. 3rd ed. Munich: Hanser Publishers; 2004. p. 183.
[12] Bae, J., et al., Fibers Poly., 2013. 14, 729.
[13] R. W. Seymour, et al., Macromol., 1975. 8, 331.
[14] Adams RK, Hoeschelle GK, Witsiepe WK. In:Holden G, Kricheldorf HR, Quirk RP, editors. Thermoplastic elastomers. 3rd ed. Munich: Hanser Publishers; 2004. p. 202.
[15] Nagai Y., et al., Polym. Degrad. Stab., 1999. 65, 217.
[16] Lee, T.-y., et al., Polym. Bull., 2010. 66, 979.
[17] Kim JK (2005) Automobile rubber parts (Korea). Miraecom, Korea
[18] G. Pritchard, Plastics Additives, UK: Chapman & Hall, 1998, p.56 G. Pritchard, Plastics Additives, UK: Chapman & Hall, 1998, p.56
[19] Scott, G. (1993) Atmospheric Oxidation and Antioxidants, Vol. 1 (ed. G. Scott), Elsevier Applied Science, London and New York, pp. 121-224
[20] Li, B., et al., J. Chromatogr. Sci., 2015. 53, 1026.
[21] Lau, O.W., et al., J. Chromatogr. A, 2000. 882, 255–270.
[22] Bang, D.Y., et al. Compr. Rev. Food Sci. F., 2012. 11, 453–470.
[23] Wang, Z.W., et al., C.Y. Ital. J. Food Sci., 2012. 24, 147–153.
[24] P. Han, Tensile Testing, ASM International 1992. p.59
[25] Marcato, B., et al., Int. J. Pharm., 2003. 257, 217.
[26] Marcato, B., et al. Chromatogr., 2000. 869, 285–300.
[27] Ferrara, G., et al.. Polym. Degrad. Stabil., 2001. 73, 411–416.
[28] Haider, N., et al. J. Appl. Polym. Sci. , 2002. 85, 974–988.
[29] Mayumi, J., et al., Poly. J., 2007. 40, 1.
[30] G. Beamson and D. Briggs, High resolution XPS of Organic Polymers, John Wily & Sons, Chichester, 1992. p.88, 89, 174, 175

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top