跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠學
研究生(外文):Chen, Kuan Hsueh
論文名稱:甲醇製芳香烴的動力學模型發展
論文名稱(外文):Development of a kinetic model for methanol to aromatics
指導教授:汪上曉汪上曉引用關係
指導教授(外文):Wong, Shan Hill
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:82
中文關鍵詞:甲醇製芳香烴動力學模型參數調整
外文關鍵詞:Methanol to AromaticsKinetic modelParameter adjustment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著石油儲存量越來越稀少,油價也隨著升高,因此使用便宜的C1當原物料已經受到廣到重視,例如利用甲烷或是煤當作能源或是在石油化學工業中利用甲醇進行各種製程(此稱為甲醇經濟)。甲醇製烯烴在商業上已經被證明是有競爭力的製程,但甲醇製芳香烴(如苯,甲苯,二甲苯)尚未能商業化。甲醇製烯烴在文獻上已經有許多的研究如觸媒、動力學模型還有反應器的設計,然而甲醇製芳香烴的反應機構尚未被完全的了解,關於此製程的模型的文獻相對少了很多。在此研究中,藉由文獻建立甲醇製烴的模型(Mihail et al. 1983),並結合相關文獻所提供反應式整合出一雙循環模型機理,比較在我們實驗室所進行的甲醇製芳烴實驗數據,藉由調整反應參數來達到與實驗相似之結果,以此模型為基礎可以對每一組觸媒實驗結果進行調整,了解各種觸媒與反應之間的影響。
As the petroleum reserves became scarce and oil prices rise, the use of cheap C1 raw materials such as methane or coal as energy source or feedstock for petrochemical industry via the methanol route, i.e. the so called methanol economy, has received much attention. The competitiveness of conversion of methanol to light olefins (MTO) has been demonstrated commercially. The conversion of methanol to light aromatics (MTA) such as benzene, toluene and xylenes (BTX) has yet to be fully commercialized. There are many studies on catalysis, kinetic modelling and reactor design on MTO. The mechanism of MTA has yet to be fully understood and there is relatively few models on MTA. In this study, we built MTH model (Mihail et al. 1983) and try to combine reactions found in the literature in order to build the dual cycle mechanism. We attempt to use this integrating model to compare the result of experiment from our lab. By adjusting the model’s kinetic parameters, we can get the similar result with experiment. We can use the model as base to adjust each experiment and understand the interaction of catalyst and reactions.
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VII
第一章、緒論 1
一.1芳香烴簡介 1
一.2甲醇經濟 2
一.3研究動機 5
第二章、文獻回顧 6
二.1 甲醇製芳香烴 6
二.2 甲醇製烯烴動力學 11
二.3丙烷製芳香烴動力學 31
第三章、研究方法 37
三.1 動力學模型 37
三.2 Aspen Plus模型建立與調整 52
第四章、結果與討論 53
四.1實驗數據與模擬比較 53
四.2第一次調整 55
四.3第二次調整 57
四.4第三次調整 59
四.5第四次調整 62
四.6第五次調整 63
四.7第六次調整 65
四.8實驗數據與調整後模擬比較 67
四.9結果討論 77
第五章、結論 78
第六章、參考文獻 79

1. Hock, H.; Lang, S., Autoxydation von Kohlenwasserstoffen, IX. Mitteil.: Über Peroxyde von Benzol‐Derivaten. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1944, 77 (3‐4), 257-264.
2. Olah, G. A., Beyond oil and gas: the methanol economy. Angew. Chem.-Int. Edit. 2005, 44 (18), 2636-2639.
3. Lok, B. M.; Messina, C. A.; Patton, R. L.; Gajek, R. T.; Cannan, T. R.; Flanigen, E. M., Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1984, 106 (20), 6092-6093.
4. Stöcker, M., Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mat. 1999, 29 (1–2), 3-48.
5. Gregoty A.Funk, D. M., A different game plan. Hydrocarbon Engineering. 2013, 25-28.
6. Dahl, I. M.; Kolboe, S., On the reaction-mechanism for hydrocarbon formation from methanol over SAPO-34 .1. Isotopic labeling studies of the co-reaction of ethene and methanol. J. Catal. 1994, 149 (2), 458-464.
7. Chang, C. D.; Silvestri, A. J., The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. Current Contents/Engineering Technology & Applied Sciences 1987, (14), 14-14.
8. 邹琥, 吴巍, 葸雷,朱宁,史军军, 甲醇制芳烴研究进展. 石油學報(石油加工) 2013, 29, 539-547.
9. Song, C.; Liu, S. L.; Li, X. J.; Xie, S. J.; Liu, Z. G.; Xu, L. Y., Influence of reaction conditions on the aromatization of cofeeding n-butane with methanol over the Zn loaded ZSM-5/ZSM-11 zeolite catalyst. Fuel Process. Technol. 2014, 126, 60-65.
10. Niu, X. J.; Gao, J.; Miao, Q.; Dong, M.; Wang, G. F.; Fan, W. B.; Qin, Z. F.; Wang, J. G., Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous Mesoporous Mat. 2014, 197, 252-261.
11. Zhang, G. Q.; Bai, T.; Chen, T. F.; Fan, W. T.; Zhang, X., Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Ind. Eng. Chem. Res. 2014, 53 (39), 14932-14940.
12. Najafabadi, A. T.; Fatemi, S.; Sohrabi, M.; Salmasi, M., Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J. Ind. Eng. Chem. 2012, 18 (1), 29-37.
13. Fatourehchi, N.; Sohrabi, M.; Royaee, S. J.; Mirarefin, S. M., Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO). Chem. Eng. Res. Des. 2011, 89 (6A), 811-816.
14. Bos, A. N. R.; Tromp, P. J. J.; Akse, H. N., Conversion of methanol to lower olefins - kinetic modeling, reactor simulation, and selection. Ind. Eng. Chem. Res. 1995, 34 (11), 3808-3816.
15. Gayubo, A. G.; Aguayo, A. T.; del Campo, A. E. S.; Tarrio, A. M.; Bilbao, J., Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst. Ind. Eng. Chem. Res. 2000, 39 (2), 292-300.
16. Chen, D.; Grlnvold, A.; Moljord, K.; Holmen, A., Methanol conversion to light olefins over SAPO-34: Reaction network and deactivation kinetics. Ind. Eng. Chem. Res. 2007, 46 (12), 4116-4123.
17. Mihail, R.; Straja, S.; Maria, G.; Musca, G.; Pop, G., A kinetic model for methanol conversion to hydrocarbons. Chem. Eng. Sci. 1983, 38 (9), 1581-1591.
18. Mihall, R.; Straja, S.; Maria, G.; Musca, G.; Pop, G., Kinetic model for methanol conversion to olefins. Industrial & Engineering Chemistry Process Design and Development. 1983, 22 (3), 532-538.
19. Sullivan, R. F.; Sieg, R. P.; Langlois, G. E.; Egan, C. J., A new reaction that occurs in hydrocracking of certain aromatic hydrocarbons. J. Am. Chem. Soc. 1961, 83 (5), 1156-&.
20. Mole, T.; Bett, G.; Seddon, D., Conversion of methanol to hydrocarbons over zsm-5 zeolite - an examination of the role of aromatic-hydrocarbons using carbon-13-labeled and deuterium-labeled feeds. J. Catal. 1983, 84 (2), 435-445.
21. Svelle, S.; Joensen, F.; Nerlov, J.; Olsbye, U.; Lillerud, K. P.; Kolboe, S.; Bjorgen, M., Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 2006, 128 (46), 14770-14771.
22. Bjorgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.; Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U., Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal. 2007, 249 (2), 195-207.
23. Sun, X. Y.; Mueller, S.; Shi, H.; Haller, G. L.; Sanchez-Sanchez, M.; van Veen, A. C.; Lercher, J. A., On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. J. Catal. 2014, 314, 21-31.
24. Biscardi, J. A.; Iglesia, E., Isotopic tracer studies of propane reactions on H-ZSM5 zeolite. J. Phys. Chem. 1998, 102 (46), 9284-9289.
25. Lukyanov, D. B.; Gnep, N. S.; Guisnet, M. R., Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5. Ind. Eng. Chem. Res. 1995, 34 (2), 516-523.
26. Kitagawa, H.; Sendoda, Y.; Ono, Y., Transformation of propane into aromatic-hydrocarbons over ZSM-5 zeolites. J. Catal. 1986, 101 (1), 12-18.
27. Guisnet, M.; Gnep, N. S., Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Appl. Catal. A-Gen. 1996, 146 (1), 33-64.
28. Nguyen, L. H.; Vazhnova, T.; Kolaczkowski, S. T.; Lukyanov, D. B., Combined experimental and kinetic modelling studies of the pathways of propane and n-butane aromatization over H-ZSM-5 catalyst. Chem. Eng. Sci. 2006, 61 (17), 5881-5894.
29. Bhan, A.; Hsu, S. H.; Blau, G.; Caruthers, J. M.; Venkatasubramanian, V.; Delgass, W. N., Microkinetic modeling of propane aromatization over HZSM-5. J. Catal. 2005, 235 (1), 35-51.
30. Corbetta, M.; Manenti, F.; Linan, L. Z.; Lima, N. M. N.; Rossi, F.; Papasidero, D., Multi-scale simulation of propane aromatization as a recovery process in the microalgae-to-oil conversion. Chemical Engineering Transactions, 2014; Vol. 39, pp 1039-1044.
31. Corbetta, M.; Manenti, F.; Pirola, C.; Tsodikov, M. V.; Chistyakov, A.V., Aromatization of propane: techno-economic analysis by multiscale "kinetics-to-process" simulation. Comput. Chem. Eng. 2014, 71, 457-466.
32. Lukyanov, D. B.; Gnep, N. S.; Guisnet, M. R., Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5. Ind. Eng. Chem. Res. 1994, 33 (2), 223-234.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top