跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭培倫
研究生(外文):Jheng, Pei Lun
論文名稱:螺旋光子超穎材料的能隙特性與螺旋二十四面體結構的色散關係之研究
論文名稱(外文):Study on the band gaps of helix photonic metamaterial and dispersion of single gyroid
指導教授:洪毓玨
指導教授(外文):Hung, Yu Chueh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:72
中文關鍵詞:超穎材料螺旋螺旋二十四面體光子晶體色散關係掌性結構負折射光子能隙
外文關鍵詞:metamaterialshelixgyroidphotonic crystaldispersion relationchiral structurenegative refractionphotonic band gap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光子超穎材料(photonic metamaterials)的發展與研究,使得人類得以透過人造的材料來達到自然材料中所無法達到的特性,其特殊性質主要是來自於組成材料本身的特性以及其在空間中的幾何形狀與排列,透過週期性的排列能使超穎材料以自然材料所無法達到的方式來操控電磁波。光子超穎材料的分類有很多種,其中掌性結構對於圓偏振光(circularly polarized light)有特別的交互作用,因而發展出很多關於圓偏振光與掌性結構特性的研究,這種掌性結構也開啟許多設計圓偏振光相關光學儀器的可能性。在此論文中,我們主要研究的掌性結構為螺旋結構(helix)以及螺旋二十四面體(gyroid),材料方面我們選擇的是介電質材料,相較於金屬的特殊的色散特性,介電質材料的色散性質在可見光波段相對比較單純,且擁有低吸收率的特性,利用此材料的週期排列,我們可以調整結構參數來控制其光學特性。為了能有效了解介電質掌性材料的特性,我們利用了有限時域差分法(FDTD)來進行研究,在空間中建立一個掌性結構的系統模型,來檢驗掌性結構與圓偏振光的交互作用。
在介電質螺旋陣列中,因其結構旋轉的構造以及幾何排列,能產生與結構同旋性的光子能隙外,也會產生與結構相反旋性的光子能隙,這種相反旋性的能隙是來自於幾個螺旋結構之間的排列產生出破碎的相反旋性結構而形成,我們期望透過調整結構參數及材料參數來調控兩個不同旋性能隙所產生的頻段。除此之外,透過系統性的參數研究結合其他文獻中的理論,我們發現不同頻段的能隙可能來自於不同的成因,這些研究結果對於應用介電質螺旋結構的光電元件之設計有相當程度的幫助。
在介電質螺旋二十四面體中,我們也發現光子能隙的存在,在能隙頻段附近的模態因為色散關係的快速變化,能夠導致一些異常的光學性質,其中包含負折射以及準直現象,我們透過建立色散曲面及等頻率線的方式來研究其色散關係,並觀察異常折射現象發生的條件,透過調整結構參數及材料參數也能調控其發生的頻段與角度,這些研究結果有助於應用介電質螺旋二十四面體結構的光學元件之設計。
The development of artificial materials, termed photonic metamaterials, has led to phenomena that do not exist in natural materials. The properties of metamaterials are derived both from the properties of their constituent materials and the geometrical arrangement. The constituent materials are usually arranged in periodic patterns, manipulating the waves in the ways that are unachievable with conventional materials. Such periodic structures with chiral morphology are capable of inducing chiroptical effects with respect to righthanded circularly polarized (RCP) light and left-handed circularly polarized (LCP) light, leading to new types of circular polarization-sensitive devices. In addition, by studying dispersion characteristics, some interesting optical properties can be discovered. In this work,
we present studies based on finite-difference time-domain (FDTD) method for analyzing the polarization-dependent properties and dispersion relation characteristics of dielectric helix and dielectric single gyroid (SG) structures. The corresponding band structures, circular
dichroism (CD) indices, coupling indices and reflectance spectra are examined to verify circular polarization-dependent properties. The dispersion surfaces and equi-frequency contours (EFCs) are applied to discover interesting wave guiding characteristics including negative refraction. Moreover, we also investigate how the frequency ranges of these optical properties
are tailored by varying the refractive index and structural parameters of the structures. These results are crucial for the design of functional devices at optical frequencies based on dielectric SG and helix structures.
Contents
Abstract i
Contents ii
1 Introduction 1
1.1 Introduction to metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Photonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Chiral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Helix chiral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1.1 Metallic helix chiral structure . . . . . . . . . . . . . . . . . 5
1.3.1.2 Dielectric helix chiral structure . . . . . . . . . . . . . . . . 6
1.3.2 Gyroid chiral structure . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2.1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Hybridization gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Negative refraction and collimation . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Methods 19
2.1 Photonic band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Finite-difference time-domain method . . . . . . . . . . . . . . . . . . 19
2.1.2 The irreducible Brillouin zone . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Dispersion surface and equi-frequency contours (EFCs) . . . . . . . . 22
2.2 Circular dichroism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Directions of circular motion . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 CD index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Coupling index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Helix chiral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Gyroid chiral structure . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Dual polarization-dependent band gap in helix chiral structure 29
3.1 Polarization-dependent properties in helix array . . . . . . . . . . . . . . . . 29
3.1.1 Band structure and reflectance spectra . . . . . . . . . . . . . . . . . 29
3.2 Effects of structural and material parameters on the polarization band gaps . 32
3.2.1 Gap shifting with structural parameters . . . . . . . . . . . . . . . . 33
3.3 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Bragg and hybridization gap . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Verification of Bragg gap . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2.1 Decreasing pitch number . . . . . . . . . . . . . . . . . . . . 35
3.3.2.2 Varying pitch length . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Verification of hybridization gap . . . . . . . . . . . . . . . . . . . . . 39
3.3.3.1 Resemblance between the coupling modes . . . . . . . . . . 39
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Gap map for RCP modes . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Gap map for LCP modes . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Gap map for complete gap and polarization gap . . . . . . . . . . . . 44
4 Extraordinary optical properties in single gyroid chiral structure 47
4.1 Dispersion relation and band gap in single gyroid . . . . . . . . . . . . . . . 47
4.1.1 Band structure and reflectance spectra . . . . . . . . . . . . . . . . . 47
4.1.2 Complete band gap and polarization-dependent band gap . . . . . . . 48
4.2 EFCs construction and analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Dispersion surfaces and EFCs . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Positive and negative refraction . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Diverging behavior and collimation effect . . . . . . . . . . . . . . . . 53
4.3 Verification of extraordinary optical properties . . . . . . . . . . . . . . . . . 55
4.3.1 Positive and negative refraction . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Diverging behavior and collimation effect . . . . . . . . . . . . . . . . 56
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Effect of refractive indices . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Structure parameters for the TiO2 SG structures . . . . . . . . . . . 59
5 Conclusions 61
[1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition) (Princeton University Press, 2008), 2nd ed.
[2] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[3] M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35, 1593–1595 (2010).
[4] Z.-Y. Zhang and Y.-P. Zhao, “Optical properties of helical and multiring ag nanostructures:
The effect of pitch height,” Journal of Applied Physics 104, 013517 (2008).
[5] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[6] M. Thiel, M. Decker, M. Deubel, M.Wegener, S. Linden, and G. von?Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Advanced
Materials 19, 207–210 (2007).
[7] K. Michielsen and D. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” Journal of the Royal Society Interface 5, 85–94 (2007).
[8] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schrder-Turk, “Absence of circular polarisation
in reflections of butterfly wing scales with chiral gyroid structure,” Materials Today: Proceedings 1, Supplement, 193 – 208 (2014). Living Light: Uniting biology and photonics – A memorial meeting in honour of Prof Jean-Pol Vigneron.
[9] M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, “Photonic properties of bicontinuous cubic microphases,” Phys. Rev. B 65, 165123 (2002).
[10] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroder-Turk, and M. Gu, “Miniature chiral beamsplitter based on gyroid photonic crystals,” Nat Photon 7, 801– 805 (2013).
[11] E. Alonso-Redondo, M. Schmitt, Z. Urbach, C. M. Hui, R. Sainidou, P. Rembert, K. Matyjaszewski, M. R. Bockstaller, and G. Fytas, “A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids,” Nat Commun 6, – (2015).
[12] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[13] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005).
[14] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004).
[15] B. Saleh and M. Teich, Fundamentals of photonics, Wiley series in pure and applied optics (Wiley, 1991).
[16] J. W. S. Rayleigh, “On the remarkable phenomenon of crystalline reflexion described by prof. stokes,” Phil. Mag 26, 256V265 (1888).
[17] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[18] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[19] T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[20] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[21] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).
[22] D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” Journal of Physics D Applied Physics 40, 2635–2651 (2007).
[23] R. Gaji´c, R. Meisels, F. Kuchar, and K. Hingerl, “Refraction and rightness in photonic crystals,” Opt. Express 13, 8596–8605 (2005).
[24] A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, R2006–R2008 (1998).
[25] P. A. Belov, C. R. Simovski, and S. A. Tretyakov, “Example of bianisotropic electromagnetic crystals: The spiral medium,” Phys. Rev. E 67, 056622 (2003).
[26] Y.-R. Li and Y.-C. Hung, “Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials,” Opt. Express 23, 16772–16781 (2015).
[27] L. Wu, Z. Yang, M. Zhao, P. Zhang, Z. Lu, Y. Yu, S. Li, and X. Yuan, “What makes single-helical metamaterials generate “pure” circularly polarized light?” Opt. Express 20, 1552–1560 (2012).
[28] Y. R. Li, R. M. Ho, and Y. C. Hung, “Plasmon hybridization and dipolar interaction on
the resonances of helix metamaterials,” IEEE Photonics Journal 5, 2700510–2700510 (2013).
[29] J. C. W. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
[30] T.-H. Kao, L.-Y. C. Chien, and Y.-C. Hung, “Dual circular polarization gaps in helix photonic metamaterials,” Opt. Express 23, 24416–24425 (2015).
[31] A. Balmakou, I. Semchenko, and M. Nagatsu, “Broadband infrared quarter wave plate realized through perpendicular-to-helical-axis wave propagation in a helix array,” Opt. Lett. 38, 3499–3502 (2013).
[32] M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[33] M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Advanced Materials 21, 4680–4682 (2009).
[34] S. Yoshioka, H. Fujita, S. Kinoshita, and B. Matsuhana, “Alignment of crystal orientations of the multi-domain photonic crystals in parides sesostris wing scales,” Journal of The Royal Society Interface 11 (2013).
[35] V. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, and R. O. Prum, “Structure, function, and self-assembly of single network gyroid (i4132) photonic crystals in butterfly wing scales,” Proceedings of the National Academy of Sciences 107, 11676–11681 (2010).
[36] G. Schrder-Turk, S. Wickham, H. Averdunk, F. Brink, J. F. Gerald, L. Poladian, M. Large, and S. Hyde, “The chiral structure of porous chitin within the wing-scales of callophrys rubi,” Journal of Structural Biology 174, 290 – 295 (2011).
[37] C. Mille, E. C. Tyrode, and R. W. Corkery, “3d titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths,” RSC Adv. 3, 3109–3117 (2013).
[38] M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schr¨oder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[39] K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, “Three-dimensionally isotropic negative refractive index materials from block copolymer
self-assembled chiral gyroid networks,” Angewandte Chemie International Edition 50, 11985–11989 (2011).
[40] M. R. J. Scherer, Double-Gyroid-Structured functional materials: synthesis and applications (Springer Science & Business Media, 2013).
[41] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Advanced Materials 25, 612–617 (2013).
[42] S. T. Hyde and G. E. Schr¨oder-Turk, “Geometry of interfaces: topological complexity in biology and materials,” Interface Focus 2, 529–538 (2012).
[43] H.-Y. Hsueh, Y.-C. Ling, H.-F. Wang, L.-Y. C. Chien, Y.-C. Hung, E. L. Thomas, and R.-M. Ho, “Shifting networks to achieve subgroup symmetry properties,” Advanced Materials 26, 3225–3229 (2014).
[44] Y. Ye and S. He, “90 polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Applied Physics Letters 96, 203501 (2010).
[45] Z.-Y. Xie, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Optical switching of a birefringent photonic crystal,” Advanced Materials 20, 3601–3604 (2008).
[46] S. Sensiper, “Electromagnetic wave propagation on helical structures (a review and survey of recent progress),” Proceedings of the IRE 43, 149–161 (1955).
[47] M. D. Turner, G. E. Schr¨oder-Turk, and M. Gu, “Fabrication and characterization of three-dimensional biomimetic chiral composites,” Opt. Express 19, 10001–10008 (2011).
[48] S.-G. Lee, C.-S. Kee, E. S. Lee, and T.-I. Jeon, “Photonic band anti-crossing in a coupled system of a teraherz plasmonic crystal film and a metal air-gap waveguide,” Journal of Applied Physics 110, 033102 (2011).
[49] T. Still, G. Gantzounis, D. Kiefer, G. Hellmann, R. Sainidou, G. Fytas, and N. Stefanou, “Collective hypersonic excitations in strongly multiple scattering colloids,” Phys. Rev. Lett. 106, 175505 (2011).
[50] T. Still, W. Cheng, M. Retsch, R. Sainidou, J. Wang, U. Jonas, N. Stefanou, and G. Fytas, “Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films,” Phys. Rev. Lett. 100, 194301 (2008).
[51] N. Kaina, M. Fink, and G. Lerosey, “Composite media mixing bragg and local resonances for highly attenuating and broad bandgaps,” Scientific Reports 3, 3240– (2013).
[52] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ϵ and μ,” Soviet Physics Uspekhi 10, 509 (1968).
[53] N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals,” Phys. Rev. B 72, 045144 (2005).
[54] R. Zhou, X. Chen, and W. Lu, “Negative refractive behavior of a two-dimensional negative-index photonic crystals using a wave vector diagram method,” Solid State
Communications 139, 345 – 350 (2006).
[55] A. Berrier, M. Swillo, N. Le Thomas, R. Houdr´e, and S. Anand, “Bloch mode excitation in two-dimensional photonic crystals imaged by fourier optics,” Phys. Rev. B 79, 165116 (2009).
[56] J. Bucay, E. Roussel, J. O. Vasseur, P. A. Deymier, A.-C. Hladky-Hennion, Y. Pennec, K. Muralidharan, B. Djafari-Rouhani, and B. Dubus, “Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study,” Phys. Rev. B 79, 214305 (2009).
[57] J. Zhang and X. Zhang, “Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals,” Journal of Applied Physics 118, 123103 (2015).
[58] K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Physics Reports 444, 101 – 202 (2007).
[59] T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Applied Physics Letters 81, 2325–2327 (2002).
[60] F. Xia, M. Yun, M. Liu, J. Liang, W. Kong, H. Tan, and W. Lv, “Negative refraction and subwavelength imaging in a hexagonal two-dimensional annular photonic crystal,”
Journal of Applied Physics 113, 013109 (2013).
[61] T. Baba, H. Abe, T. Asatsuma, and T. Matsumoto, “Photonic crystal negative refractive optics,” Journal of nanoscience and nanotechnology 10, 1473–1481 (2010).
[62] X. liang Kang, G. jun Li, and Y. ping Li, “Positive-negative refraction effect based on overlapping bands in a two-dimensional photonic crystal,” J. Opt. Soc. Am. B 26, 60–63 (2009).
[63] R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound
surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[64] G. Sun and A. G. Kirk, “Analyses of negative refraction in the partial bandgap of photonic crystals,” Opt. Express 16, 4330–4336 (2008).
[65] T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: From negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006).
[66] Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[67] L. Feng, X.-P. Liu, Y.-F. Tang, Y.-F. Chen, J. Zi, S.-N. Zhu, and Y.-Y. Zhu, “Tunable negative refraction in a two-dimensional active magneto-optical photonic crystal,” Phys. Rev. B 71, 195106 (2005).
[68] R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M.
Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[69] X. Zhang and L.-M. Li, “Creating all-angle negative refraction by using insertion,” Applied Physics Letters 86, 121103 (2005).
[70] K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, “Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens,” Phys. Rev. B 70, 205125 (2004).
[71] X. Zhang, “Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals,” Phys. Rev. B 70, 205102 (2004).
[72] Y. Luo, W. Zhang, Y. Huang, J. Zhao, and J. Peng, “Wide-angle beam splitting by use of positive–negative refraction in photonic crystals,” Opt. Lett. 29, 2920–2922 (2004).
[73] D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” Journal of Physics D: Applied Physics 40, 2635 (2007).
[74] A. Kim, K. B. Chung, and J. W.Wu, “Control of self-collimated bloch waves by partially flat equifrequency contours in photonic crystals,” Applied Physics Letters 89, 251120 (2006).
[75] H. Zhang, H. Zhu, L. Qian, and D. Fan, “Collimations and negative refractions by slabs of 2d photonic crystals with periodically-aligned tube-type air holes,” Opt. Express 15, 3519–3530 (2007).
[76] X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat Mater 7, 435–441 (2008).
[77] M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat Commun 6, – (2015).
[78] Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.
[79] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation 14,
302–307 (1966).
[80] D. W. Prather, A. Sharkawy, S. Shi, J. Murakowski, and G. Schneider, Photonic Crystals, Theory, Applications and Fabrication (Wiley Publishing, 2009).
[81] J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41, 416–419 (1951).
[82] Refractive index and extinction coefficient of materials, https://www.ecse.rpi.edu/ schubert/Educational-resources/Materials-Refractive-indexand-
extinction-coefficient.pdf.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊