(54.236.58.220) 您好!臺灣時間:2021/03/06 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雨澤
研究生(外文):Chen, Yu Ze
論文名稱:直接成長二維材料:從成長控制、材料鑑定及免轉移製程之元件應用
論文名稱(外文):Direct Growth of 2D Materials: From Controllable Growth to Material Characterizations and Transfer-Free Device Applications
指導教授:闕郁倫
指導教授(外文):Chueh, Yu Lun
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:187
中文關鍵詞:直接成長二維材料免轉移
外文關鍵詞:direct growth2D materialstransfer-free
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從2004年科學家成功於石墨剝離出一個原子層厚度的碳膜,其優異的表現激發了科學家的熱情以及好奇。由於石墨烯在各方面,如:光、電、熱,都表現出驚人的表現,因此石墨烯被視為極具高發展潛力的材料。由於化學氣相沉積法在銅片上製備出大面積單層石墨烯的成功,推向市場的目標又更進一步。然而,為了後續的應用,轉移石墨烯於目標基板的步驟是不可避免的,這卻也造成石墨烯品質的犧牲。因此,為了解決此問題,我們發展出以銅蒸氣輔助,直接於目標基板上沉積石墨烯的技術,以及提出新的成長機制。
取代ITO並應用於透明導電膜,一直是石墨烯受到高度矚目的原因之一。但是,石墨烯的導電率仍然無法跟ITO匹敵。我們成功結合金屬網絡與石墨烯,不僅大幅提升導電率,並且由於石墨烯的保護,提高了此複合材料在嚴峻條件下的操作穩定度。
雖然石墨烯被寄予厚望,但天生零能隙的電子結構,阻礙了場發效電晶體的應用。因此,同樣具備層狀結構的過渡金屬二硫化物吸引了大家的目光,更令人興趣的是它天生的電子能隙。傳統上,常用化學氣相沉積法於爐管製備材料,但其製程時間長、高熱預算。本論文中,我們利用先進儀器,如:雷射、微波系統,實現了直接成長少層於任一基板,並且具備快速、低熱預算的優點。另一特點,除了平行基板的堆疊方向的過渡金屬二硫化物,受到大家的注目外,近年來,不論是理論計算或是實驗數據,皆指出具備垂直結構的過渡金屬二硫化物,在電化學的應用上具有高度潛力。本論文中,我們成功以微波系統,在短時間內(3分鐘),製備出垂直結構的過渡金屬二硫化物,並且製備感測器,經由實驗數據,證明出應用於電化學上的潛力。

Since 2004, scientists successfully exfoliated one-atomic layer carbon layer from graphite, namely graphene, this incredible material had been triggered our passion and enthusiasm until now. Owing to the fabulous properties of various aspects such as optical, electrical, thermal, graphene is highly expected a potential material in all respects. Monolayer and large area of graphene on Cu via chemical vapor deposition (CVD) process make a notable step toward pushing graphene into market. However, the inevitable transfer process badly sacrificed the quality of graphene, hindering the following application. To address this issue, we successfully develop a direct deposition of graphene by means of gaseous catalytic species, Cu vapor, as well as established the mechanism from the view point of Cu vapor.
Transparent conducting film is the main target of using graphene for replacing conventional ITO. Nevertheless, the conductivity was still far behind ITO by far. We combined metal meshes with covering graphene, not only improving conductivity as good as ITO but also enhancing the stability in harsh environment by graphene shielding.
Thanks to the great development of graphene, transition metal dichalcogenide was also attracted everyone’s attention due to the similar layer structure and its nature band gap property. Differencing with conventional CVD process via furnace, we firstly exploited advanced technique, such as laser, microwave system, to aim for fast and low temperature growth. Moreover, we fabricated the vertical structure of MoS2 with exposing edges via microwave system, and further proved its highly active property in which benefited the application of electrochemistry field.

Abstract in Chinese i
Abstract ii
Acknowledgements iii
Chapter 1 Rise of two dimensional materials: graphene, single layer of transition metal dichalcogenide 1
1.1 Graphene 1
1.1.1 Transparent Conductive Materials 2
1.1.2 The manufacturing process of graphene 4
1.1.2.1 Mechanical Exfoliation 4
1.1.2.2 Intercalation by metal particles 5
1.1.2.3 Exfoliation by immersing in the organic solution 7
1.1.2.4 Reduction of Graphene oxide 7
1.1.2.5 Thermo-decomposition of SiC into graphene 9
1.1.2.6 Chemical vapor deposition 9
1.2 Transition Metal Dichalcogenides (TMDs) 11
1.2.1 The atomic structure of TMDs 11
1.2.2 Single layer of TMDs 13
1.2.3 The practical application based on TMDs 18
1.2.3.1 Lubricants 18
1.2.3.2 Hydrodesulfurization catalysts 20
1.2.3.3 Li-ion batteries 22
1.2.3.4 Hydrogen evolution reaction 25
1.2.4 The manufacturing process of few- and mono- layer of TMDs 29
1.2.4.1 Mechanical Exfoliation 29
1.2.4.2 Lithium-based intercalation 30
1.2.4.3 Plasma-thinning process and Laser-thinning process 31
1.2.4.4 Thermolysis of WSe2 34
1.2.4.5 Direct deposition of MoS2 by pulsed laser deposition (PLD) 35
1.2.4.6 Synthesis of monolayer TMDs by chemical vapor deposition (CVD) 36
1.3 Motivations 39
Chapter 2 The role of Cu vapor on the synthesis of graphene grew on Cu foils 41
2.1 Methods 41
2.1.1 Aging quartz tube with condensed Cu vapor 41
2.1.2 Growing graphene on Cu foils for evaporation test 43
2.2 Results and Discussion 44
2.2.1 The proof of Cu vapor existed during the graphene growing 44
2.2.2 Dual role of Cu vapor played during the formation of graphene 48
2.2.3 Mechanism 53
2.2.4 Directly growing graphene on oxide substrate (gas phase) 55
2.3 Conclusion 57
Chapter 3 Direct transformation of amorphous carbon Film into graphene/graphite on onsulators via Cu mediation engineering and its application on all-Carbon based device 58
3.1 Methods 58
3.1.1 Transformation of amorphous carbon to graphene 58
3.1.2 Fabrication of electrical devices made of carbon materials. 58
3.2 Results and Discussion 59
3.2.1 The influence of Cu vapor on the phase transformation from amorphous to crystalline during annealing 59
3.2.2 The thickness control of resulting graphene/graphite by pre-deposited amorphous carbon 62
3.2.3 X-ray photoemission spectroscopy analysis in depth 67
3.2.4 Large area, patternable graphene and electrical performance 71
3.2.5 Demonstration of all carbon-based devices 74
3.2.6 Mechanism 76
3.3 Conclusion 80
Chapter 4 Low temperature growth of graphene on glass by carbon-enclosed chemical vapor deposition process and its application as transparent electrode in the harsh environment 81
4.1 Methods 81
4.1.1 Chemical vapor deposition (CE-CVD) 81
4.1.2 Fabrications of graphene Field-Effect Transistors 81
4.1.3 Fabrications of metal mesh shielded with graphene 82
4.2 Results and Discussion 83
4.2.1 The schematics of low temperature CE-CVD process for the growth of monolayer graphene with high quality 83
4.2.2 The quality and coverage of resulting graphene w/ and w/o underlying graphite plate 86
4.2.3 The electrical performance 94
4.2.4 Mechanism and its availability of coating NWs 95
4.2.5 Synthesis of graphene on a ultrathin metal grid deposited directly on commercial optical glass 99
4.2.6 Anti-oxidation and Anti-corrosion tests 104
4.3 Conclusions 109
Chapter 5 Ultrafast and low temperature synthesis of highly crystalline and patternable few-layers tungsten diselenide by laser irradiation assisted-selenization process 110
5.1 Methods 110
5.1.1 Sample preparation and Laser-irradiation 110
5.2 Results and Discussion 111
5.2.1 The schematics of formation of WSe2 via laser irradiation assisted-selenization 111
5.2.2 Material characterization: optical contrast, Raman spectra and mapping, photoluminescence spectrum 114
5.2.3 Cross-sectional TEM image of few layers of WSe2 117
5.2.4 Evolution of WSe2 from amorphous to crystalline and growth window 119
5.2.5 X-ray photoemission spectroscopy 123
5.2.6 Patternable WSe2 125
5.2.7 One step synthesis of WSe2-FET devices 128
5.2.8 Synthesis of MoSe2 via LIAS 130
5.3 Conclusion 132
Chapter 6 Low temperature and ultrafast synthesis of patternable few-layers transition metal dichacogenides with controllable stacking alignment by microwave-assisted selenization process 133
6.1 Methods 133
6.1.1 Sample preparation and Microwave assisted-selenization process. 133
6.1.2 Characterizations. 133
6.2 Results and Discussion 135
6.2.1 The schematics of formation of WSe2 via microwave- assisted-selenization 135
6.2.2 XPS analysis of Raman mapping of WSe2 and MoSe2 138
6.2.3 Growth window for the reduction of WO3 film to few-layers WSe2 141
6.2.4 Patternability of WSe2 143
6.2.5 Formation of vertical MoS2 via microwave treatment and possible mechanism 148
6.2.6 Vertical Structure WSe2-Based Gas Sensor 153
6.2.7 Conclusions 155
Chapter 7 Future Work 156
References 163


1. Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192-200.
2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
3. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys Rev Lett 2008, 100, 016602.
4. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340, 1311-1314.
5. Peigney, A; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001, 39, 507-514.
6. Chae, H. K.; Siberio-Perez, D. Y,; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. A Route to High Surface Area Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 427, 523-527.
7. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.
8. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Instrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.
9. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
10. Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662.
11. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett 2009, 9, 4359-4363.
12. Zhang, B. Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. J. Broadband High Photoresponse from Pure Monolayer Graphene Photodetector. Nat. Commun. 2013, 4, 1811.
13. Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B 2012, 173, 1-21.
14. Pan, S.-H.; Medina, H.; Wang, S.-B.; Chou, L.-J.; Wang, Z. M.; Chen, K.-H.; Chen, L.-C.; Chueh, Y.-L. Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron-nitrogen by a non-contact approach. Nanoscale 2014, 6, 8635-8641.
15. Hass, J.; Heer, W. A. d.; Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J Phys: Condens Matter 2008, 20, 323202.
16. de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Epitaxial graphene. Solid State Commun 2007, 143, 92-100.
17. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191-1196.
18. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 2008, 3, 538-542.
19. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008, 3, 270-274.
20. Coraux, J.; N‘Diaye, A. T.; Busse, C.; Michely, T. Structural Coherency of Graphene on Ir(111). Nano Lett 2008, 8, 565-570.
21. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 2008, 9, 30-35.
22. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314.
23. Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu, Q.; Peng, L.-M.; Bao, X.; Cheng, H.-M. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 2012, 3, 699.
24. Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W. Graphene Annealing: How Clean Can It Be? Nano Lett 2011, 12, 414-419.
25. Su, C.-Y.; Lu, A.-Y.; Wu, C.-Y.; Li, Y.-T.; Liu, K.-K.; Zhang, W.; Lin, S.-Y.;
Juang, Z.-Y.; Zhong, Y.-L.; Chen, F.-R.; Li, L.-J. Direct Formation of Wafer
Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor
Deposition. Nano Lett. 2011, 11, 3612.
26. Xu, L.; Zhou, W. L.; Frommen, C.; Baughman, R. H.; Zakhidov, A. A.;
Malkinski, L.; Wang, J.-Q.; Wiley, J. B. Electrodeposited Nickel and Gold
Nanoscale Metal Meshes with Potentially Interesting Photonic Properties.
ChemComm. 2000, 997.
27. Kim, A.; Won, Y.; Woo, K.; Jeong, S.; Moon, J. All-Solution-Processed Indium-Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin-Film Solar Cells. Adv. Funct. Mater. 2014, 24, 2462.
28. Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 2008, 8, 689.
29. Kang, M.-G.; Joon Park, H.; Hyun Ahn, S.; Jay Guo, L. Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol. Energ. Mat. Sol. Cells 2010, 94, 1179.
30. Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H.-J.; Dennler, G.; Sariciftci, N. S.; Hu, L.; Gruner, G. Organic Solar Cells with Carbon Nanotube Network Electrode. Appl. Phys. Lett. 2006, 88, 233506.
31. Hellstrom, S. L.; Vosgueritchian, M.; Stoltenberg, R. M.; Irfan, I.; Hammock, M.; Wang, Y. B.; Jia, C.; Guo, X.; Gao, Y.; Bao, Z. Strong and Stable Doping of Carbon Nanotubes and Graphene by MoOx for Transparent Electrodes. Nano Lett 2012, 12, 3574.
32. Kholmanov, I. N.; Domingues, S. H.; Chou, H.; Wang, X.; Tan, C.; Kim, J.-Y.; Li, H.; Piner, R.; Zarbin, A. J.; Ruoff, R. S. Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes. ACS Nano 2013, 7, 1811.
33. Zhu, Y.; Sun, Z.; Yan, Z.; Jin, Z.; Tour, J. M. Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS Nano 2011, 5, 6472.
34. He, T.; Xie, A.; Reneker, D. H.; Zhu, Y. A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method. ACS Nano 2014, 8, 4782.
35. Guo, H.; Lin, N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; Peng, D.-L. Copper Nanowires as Fully Transparent Conductive Electrodes. Sci. Rep. 2013, 3, 2323.
36. Gao, T.; Wang, B.; Ding, B.; Lee, J.-k.; Leu, P. W. Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes. Nano lett. 2014, 14, 2105.
37. Rathmell, A. R.; Nguyen, M.; Chi, M.; Wiley, B. J. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks. Nano lett. 2012, 12, 3193.
38. Chen, Z.; Ye, S.; Wilson, A. R.; Ha, Y.-C.; Wiley, B. J. Optically transparent hydrogen evolution catalysts made from networks of copper–platinum core–shell nanowires. Energ. Environ. Sci. 2014, 7, 1461-1467.
39. Chen, Z.; Ye, S.; Stewart, I. E.; Wiley, B. J. Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance. ACS Nano 2014, 8, 9673-9679.
40. Hsu, P.-C.; Wu, H.; Carney, T. J.; McDowell, M. T.; Yang, Y.; Garnett, E. C.; Li, M.; Hu, L.; Cui, Y. Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes. ACS Nano 2012, 6, 5150-5156.
41. Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater. 2014, 6, e105.
42. Miller, M. S.; O’Kane, J. C.; Niec, A.; Carmichael, R. S.; Carmichael, T. B. Silver Nanowire/Optical Adhesive Coatings as Transparent Electrodes for Flexible Electronics. ACS Appl. Mater. Interfaces 2013, 5, 10165-10172.
43. Preston, C.; Fang, Z.; Murray, J.; Zhu, H.; Dai, J.; Munday, J. N.; Hu, L. Silver nanowire transparent conducting paper-based electrode with high optical haze. J. Mater. Chem. C 2014, 2, 1248-1254.
44. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano 2009, 3, 1767-1774.
45. Khaligh, H. H.; Goldthorpe, I. Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 2013, 8, 235.
46. Wu, H.; Kong, D.; Ruan, Z.; Hsu, P.-C.; Wang, S.; Yu, Z.; Carney, T. J.; Hu, L.; Fan, S.; Cui, Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 2013, 8, 421-425.
47. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
48. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359-4363.
49. King, P. J.; Khan, U.; Lotya, M.; De, S.; Coleman, J. N. Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene. ACS Nano 2010, 4, 4238-4246.
50. Yeh, C.-H.; Medina, H.; Lu, C.-C.; Huang, K.-P.; Liu, Z.; Suenaga, K.; Chiu, P.-W. Scalable Graphite/Copper Bishell Composite for High-Performance Interconnects. ACS Nano 2013, 8, 275-282.
51. Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J.; Park, J.; Ruoff, R. S. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321-1327.
52. Medina, H.; Lin, Y.-C.; Jin, C.; Lu, C.-C.; Yeh, C.-H.; Huang, K.-P.; Suenaga, K.; Robertson, J.; Chiu, P.-W. Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications. Adv. Funct. Mater. 2012, 22, 2123-2128.
53. Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. ACS Nano 2013, 7, 5763-5768.
54. Yazami, R.; Touzain, Ph. A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators. Journal of Power Sources 1983, 9, 365-371.
55. Si, Y.; Samulski, E. T. Exfoliated Graphene Seperated by Platinum Nanoparticles. Chem. Mater. 2008, 20, 6792-6797.
56. Viculis, L. M.; Mack, J. J.; Kaner, R. B. A Chemical Route to Carbon Nanoscrolls. Science 2003, 299, 1361.
57. Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.; Kaner, R. B. Intercalation and Exfoliation Routes to Graphite Nanoplatelets. J. Mater. Chem 2005, 15, 974-978.
58. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano. Lett. 2008, 8, 1704-1708.
59. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Dueberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008, 3, 563-568.
60. Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano. Lett. 2008, 8, 1679-1682.
61. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhass, K. A.; Kleinhammers, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
62. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. C. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008, 3, 101-105.
63. Van Bommel, A. J.; Crombeen, J. E.; Van Tooren, A. LEED and Auger Electron Observations of The SiC (0001) Surface. Surf. Sci. 1975, 48, 463.
64. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene Segregated on Ni Surfaces and Transfererred to insulators. Appl. Phys. Lett. 2008, 93, 113103.
65. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dreselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano. Lett. 2009, 9, 30-35.
66. Reina, A.; Thiele, S.; Jia, X.; Bhaviripudi, S.; Dreselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Preciptation on Polycrystalline Ni Surfaces. Nano. Res. 2009, 2, 509-516.
67. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. –H.; Kim, P.; Choi, J. –Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706-710.
68. Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. -J.; Yoon, S. –M.; Choi, J. –Y.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Adv. Mater. 2009, 21, 1-6.
69. Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J.-H.; Cuniberti, G.; Büchner, B. Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator. ACS Nano 2010, 4, 4206-4210.
70. Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050-3054.
71. Ding, X.; Ding, G.; Xie, X.; Huang, F.; Jiang, M. Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 2011, 49, 2522-2525.
72. Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett 2010, 10, 1542-1548.
73. Yan, K.; Peng, H.; Zhou, Y.; Li, H.; Liu, Z. Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Lett 2011, 11, 1106-1110.
74. Yen, W.-C.; Lin, H.-C.; Huang, J.-S.; Huang, Y.-J.; Chueh, Y.-L. Ultra-Fast Synthesis of Graphene and Highly Oriented Graphite by Rapid Microwave Heating Process. Sci Adv Mater 2014, 6, 8.
75. Teng, P.-Y.; Lu, C.-C.; Akiyama-Hasegawa, K.; Lin, Y.-C.; Yeh, C.-H.; Suenaga, K.; Chiu, P.-W. Remote Catalyzation for Direct Formation of Graphene Layers on Oxides. Nano Lett 2012, 12, 1379-1384.
76. Yen, W.-C.; Chen, Y.-Z.; Yeh, C.-H.; He, J.-H.; Chiu, P.-W.; Chueh, Y.-L. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization. Sci. Rep. 2014, 4, 4739.
77. Yen, W.-C.; Medina, H.; Hsu, C.-W.; Chueh, Y.-L. Conformal graphene coating on high-aspect ratio Si nanorod arrays by a vapor assisted method for field emitter. R Soc Chem Adv 2014, 4, 27106-27111.
78. http://www.ptable.com/?lang=zh-tw
79. Wu, J.-Y.; Lin, M. -N.; Wang, L.-D.; Zhang, T. Photoluminescence of MoS2 Prepared by Effective Grinding-Assisted Sonication Exfoliation. Journal of Nanomaterials 2014, 2014.
80. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453.
81. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105.
82. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; James, H.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695-2700.
83. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. –Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
84. Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B 2012, 85, 186.
85. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.
86. Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74-80.
87. Radissavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nature Nanotechnology 2011, 6, 147-150.
88. Winer, W. O. Molybdenum disulphide as a lubricant: a review of the fundamental knowledge. Wear 1967, 10, 422–452.
89. Cheng, F.; Chen, J.; Gou, X. MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives. Adv. Mater. 2006, 18, 2561–2564.
90. Harris, S.; Chianelli, R. R. Catalysis of Transition Metal Sulfides: The Relation between Calculated Electronic Trends and HDS Activity. Journal of Catalysis 1984, 86, 400–412.
91. Brenner, J.; Marshall, C. L.; Ellis, L.; Tomczyk, N. Microstructural Characterization of Highly HDS-Active Co6S8-Pillared Molybdenum Sulfides. Chem. Mater. 1998, 10, 1244–1257.
92. Daage, M.; Chianelli, R. R. Structure-Function Relations in Molybdenum Sulfide Catalysts: The “Rim-Edge” Model. Journal of Catalysis 1994, 149, 414–427.
93. Guerard, D.; Herold, A. Intercalation of Lithium into Graphite and Other Carbons. Carbon 1975, 13, 337–345.
94. Murugan, A. V.; Quintin, M.; Delville, M. –H.; Campet, G.; Gopinath, C. S.; Vijayamohanan, K. Exfoliation-induced nanoribbon formation of poly(3,4-ethylene dioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteriess. Journal of Power Sources 2006, 156, 615–619
95. Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Exfoliated MoS2 Nanocomposite as an Anode Materialfor Lithium Ion Batteries. Chem. Mater. 2010, 22, 4522–4524.
96. Chen, J.; Kuriyama, N.; Yuan, H.; Takeshita, H. T.; Sakai, T. Electrochemical Hydrogen Storage in MoS2 Nanotubes. J. Am. Chem. Soc. 2001, 123, 11813–11814.
97. Voiry, D.; Saleh, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227.
98. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308.
99. Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100.
100. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen Evolution on Nano-Particulate Transition Metal Sulfides. Faraday Discuss. 2008, 140, 219.
101. Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Lett. 2013, 13, 3426.
102. Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341.
103. Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M. Edge-Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices. Adv. Mater. 2014, 26, 8163.
104. Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. Nano Lett. 2012, 12, 3187-3192.
105. Liu, Y.; Nan, H.; Wu, X.; Pan, W.; Wang, W.; Bai, J.; Zhao, W.; Sun, L.; Wang, X.; Ni, Z. Layer-by-Layer Thinning of MoS2 by Plasma. ACS Nano 2013, 7, 4202-4209.
106. Xu, K.; Wang, Z.; Du, X.; Safdar, M.; Jiang, C.; He, J. Atomic-layer triangular WSe2 Sheets: Synthesis and Layer-Dependent Photoluminescence Property. Nanotechnology 2013, 24.
107. Loh, T. A. J.; Chua, D. H. C. Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS2 on Metal Substrates. ACS Appl. Mater. Interfaces 2014, 6, 15966-15971.
108. Lee, Y.-H.; Zhang, X.-Q.; Zhang, W.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J.; Lin, T.-W. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320-2325.
109. Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; Lai, C.-S.; Li, L.-J. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett. 2012, 12, 1538-1544.
110. Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Jaung, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano 2014, 8, 923-930.
111. https://en.wikipedia.org/wiki/File:Eight_Allotropes_of_Carbon.png
112. Geiger, F.; Busse, C. A.; Loehrke, R. I. The vapor pressure of indium, silver, gallium, copper, tin, and gold between 0.1 and 3.0 bar. Int J Thermophys 1987, 8, 425-436.
113. Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.-J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E. Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Lett 2010, 10, 4944-4951.
114. Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices. Nano Lett 2011, 11, 767-771.
115. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 2011, 5, 6069-6076.
116. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5, 574-578.
117. Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a High Mobility Dual-Gated Graphene Field-Effect Transistor with Al2O3 Dielectric. Appl Phys Lett 2009, 94.
118. Lee, S.; Lee, K.; Zhong, Z. Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. Nano Lett 2010, 10, 4702-4707.
119. Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549-552.
120. Li, B.; Cao, X.; Ong, H. G.; Cheah, J. W.; Zhou, X.; Yin, Z.; Li, H.; Wang, J.; Boey, F.; Huang, W.; Zhang, H. All-Carbon Electronic Devices Fabricated by Directly Grown Single-Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes. Adv. Mater. 2010, 22, 3058-3061.
121. Tian, H.; Yang, Y.; Xie, D.; Cui, Y.-L.; Mi, W.-T.; Zhang, Y.; Ren, T.-L. Wafer-Scale Integration of Graphene-based Electronic, Optoelectronic and Electroacoustic Devices. Sci. Rep. 2014, 4, 3598.
122. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.
123. Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.
124. Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190-3196.
125. Muradov, N. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Catal. Commun. 2001, 2, 89-94.
126. Kim, M. H.; Lee, E. K.; Jun, J. H.; Kong, S. J.; Han, G. Y.; Lee, B. K.; Lee, T.-J.; Yoon, K. J. Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. Int. J. Hydrogen Energ. 2004, 29, 187-193.
127. Choudhary, T. V.; Sivadinarayana, C.; Chusuei, C. C.; Klinghoffer, A.; Goodman, D. W. Hydrogen Production via Catalytic Decomposition of Methane. J. Catal. 2001, 9-18.
128. Lee, E. K.; Lee, S. Y.; Han, G. Y.; Lee, B. K.; Lee, T.-J.; Jun, J. H.; Yoon, K. J. Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production. Carbon 2004, 42, 2641-2648.
129. Li, Z.; Wu, P.; Wang, C.; Fan, X.; Zhang, W.; Zhai, X.; Zeng, C.; Li, Z.; Yang, J.; Hou, J. Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano 2011, 5, 3385-3390.
130. Woo, Y. S.; Seo, D. H.; Yeon, D.-H.; Heo, J.; Chung, H.-J.; Benayad, A.; Chung, J.-G.; Han, H.; Lee, H.-S.; Seo, S.; Choi, J.-Y. Low temperature growth of complete monolayer graphene films on Ni-doped copper and gold catalysts by a self-limiting surface reaction. Carbon 2013, 64, 315-323.
131. Weatherup, R. S.; Bayer, B. C.; Blume, R.; Ducati, C.; Baehtz, C.; Schlögl, R.; Hofmann, S. In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth. Nano Lett. 2011, 11, 4154-4160.
132. Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R. S. Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils. ACS Nano 2012, 6, 2471-2476.
133. Kim, J.; Ishihara, M.; Koga, Y.; Tsugawa, K.; Hasegawa, M.; Iijima, S. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 091502.
134. Takatoshi, Y.; Masatou, I.; Masataka, H. Low Temperature Graphene Synthesis from Poly(methyl methacrylate) Using Microwave Plasma Treatment. Appl. Phys. Express 2013, 6, 115102.
135. Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 263106.
136. Terasawa, T.-o.; Saiki, K. Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 2012, 50, 869-874.
137. Peng, K.-J.; Wu, C.-L.; Lin, Y.-H.; Liu, Y.-J.; Tsai, D.-P.; Pai, Y.-H.; Lin, G.-R. Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature. J. Mater. Chem. C 2013, 1, 3862-3870.
138. Wei, D.; Lu, Y.; Han, C.; Niu, T.; Chen, W.; Wee, A. T. S. Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angew Chem. Int. Ed. 2013, 52, 14121-14126.
139. Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J. Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. Nano Lett. 2009, 9, 4479-4483.
140. Kahng, Y. H.; Kim, M. K.; Lee, J. H.; Kim, Y. J.; Kim, N.; Park, D. W.; Lee, K. Highly conductive flexible transparent electrodes fabricated by combining graphene films and inkjet-printed silver grids. Solar Energy Mat. And Sol. Cells 2014, 124, 86-91.
141. Chen, R.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes. Adv. Funct. Mater. 2013, 23, 5150-5158.
142. Chen, T. L.; Ghosh, D. S.; Mkhitaryan, V.; Pruneri, V. Hybrid Transparent Conductive Film on Flexible Glass Formed by Hot-Pressing Graphene on a Silver Nanowire Mesh. ACS Appl. Mater. Interfaces 2013, 5, 11756-11761.
143. Deng, F.; Zheng, Q. S. An analytical model of effective electrical conductivity of carbon nanotube composites. Appl. Phys. Lett. 2008, 92, 071902.
144. Ye, S.; Rathmell, A. R.; Chen, Z.; Stewart, I. E.; Wiley, B. J. Metal Nanowire Networks: The Next Generation of Transparent Conductors. Adv. Mater. 2014, 26, 6670-6687.
145. Terrones, H.; Del Corro, E.; Feng, S.; Poumirol, J. M.; Rhodes, D.; Smirnov, D.; Pradhan, N. R.; Lin, Z.; Nguyen, M. A. T.; Elias, A. L.; Mallouk, T. E.; Balicas, L.; Pimenta, M. A.; Terrones, M. New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 2014, 4.
146. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; Ogletree, F.; Li, J.; Grossman, J. C.; Wu, J. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3.
147. Zhao, W.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677-9683.
148. Mooradian, A.; Wright, G. B., The Raman Spectrum of trigonal, α-monoclinic and Amorphous Selenium. In The physics of selenium and tellurium, Cooper, W. C., Ed. Pergamon Press: 1969, 269.
149. Masuzawa, T.; Saito, I.; Yamada, T.; Onishi, M.; Yamaguchi, H.; Suzuki, Y.; Oonuki, K.; Kato, N.; Ogawa, S.; Takakuwa, Y.; Koh, A. T. T.; Chua, D. H. C.; Mori, Y.; Shimosawa, T.; Okano, K. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode. Sensors 2013, 13, 13744-13778.
150. Shpak, A. P.; Korduban, A. M.; Medvedskij, M. M.; Kandyba, V. O. XPS studies of active elements surface of gas sensors based on WO3−x nanoparticles. J. Electron. Spectrosc. Relat. Phenom. 2007, 156–158, (0), 172-175.
151. Boscher, N. D.; Carmalt, C. J.; Parkin, I. P. Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces. J. Mater. Chem. 2006, 16, (1), 122-127.
152. Salitra, G.; Hodes, G.; Klein, E,; Tenne, R. Highly oriented WSe2 thin films prepared by selenization of evaporated WO3. Thin Solid Film 1994, 245, 180-185.
153. Lim, B. S.; Rahtu, A.; Gordon, R. G. Atomic layer deposition of transition metals. Nat. Mater. 2003, 2, 749-754.
154. Panish, M. B. Molecular Beam Epitaxy. Science 1980, 208, (23), 916-922.
155. Vispute, R. D.; Talyansky, V.; Trajanovic, Z.; Choopun, S.; Downes, M.; Sharma, R. P.; Venkatesan, T.; Woods, M. C.; Lareau, R. T.; Jones, K. A.; Iliadis, A. A. Appl. Phys. Lett. 1997, 70.
156. Li, H.; Lu, G.; Wang, Y.; Yin, Z.; Cong, C.; He, Q.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical Exfoliation and Characterization of Single- and Few-Layer Nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974-1981.
157. Whittingham, M. S.; R. Gamble Jr., F. The lithium intercalates of the transition
metal dichalcogenides. Mat. Res. Bull. 1975, 10, (no), 363-370.
158. Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-Layer MoS2. Mat. Res. Bull. 1986, 21, 457-461.
159. Schumacher, A.; Scandella, L.; Kruse, N.; Prins, R. Single-Layer MoS2 on Mica: Studies by Means of Scanning Force Microscopy. Surf. Sci. Lett. 1993, 289, 595-598.
160. Lee, L. T. L.; He, J.; Wang, B.; Ma, Y.; Wong, K. Y.; Li, Q.; Xiao, X.; Chen, T. Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles. Sci. Rep. 2014, 4.
161. Tsirlina, T.; Feldman, Y.; Homyonfer, M.; Sloan, J.; Hutchison, J. L.; Tenne, R. Synthesis and characterization of inorganic fullerene-like WSe2 material. Fullerene Sci. Technol. 1998, 6, (1), 157-165.
162. Chen, Y. Z.; Medina, H.; Su, T. Y.; Li, J. G.; Cheng, K. Y.; Chiu, P. W.; Chueh, Y. L. Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted Selenization Process. ACS Nano 2015, 9, 4346-4353.
163. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A.; Conti, G.; Conlon, C.; Palsson, G. K.; Martin, M. C.; Minor, A. M.; Fadley, C. S.; Yablonovitch, E.; Maboudian, R.; Javey, A. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198.
164. Wang X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.; Tay, B. K.; Ajayan, P. M. Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano 8, 5125-5131 (2014).
165. Huang, J.; Yang, L.; Liu, D.; Chen, J.; Fu, Q.; Xiong, Y.; Lin, F.; Xiang, B. Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale 2015, 7, 4193-4198.
166. Zhou H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y.; Duan, X. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett 2015, 15, 709-713.
167. Cao, L.; Yang, S.; Gao, W.; Liu, Z.; Gong, Y.; Ma, L.; Shi, G.; Lei, S.; Zhang,
Y.; Zhang, S.; Vajtai, R.; Ajayan, P. M. Direct Laser-Patterned
Micro-Supercapacitors from Paintable MoS2 Films. Small 2013, 9, 2905-2910.
168. Jung, Y.; Shen, J.; Liu, Y.; Woods, J. M.; Sun, Y.; Cha, J. J. Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS2 and WS2. Nano Lett. 2014, 14, 6842-6849.
169. Yu, J. H.; Lee, H. R.; Hong, S. S.; Kong, D.; Lee, H. W.; Wang, H.; Xiong, F.; Wang, S.; Cui, Y. Vertical Heterostructure of Two-Dimensional MoS2 and WSe2 with Vertically Aligned Layers. Nano Lett. 2015, 15, 1031.
170. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308.
171. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902.
172. Chiritescu, C.; Cahill, D. G.; Nguyen, N.; Johnson, D.; Bodapati, A.; Keblinski, P.; Zschack, P. Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals. Science 2006, 19, 351.
173. Muratone, C.; Varshney, V.; Gengler, J. J.; Hu, J.; Bultman, J. E.; Smith, T. M.; Shamberger, P. J.; Qiu, B.; Ruan, X.; Roy, A. K.; Voevodin, A. A. Cross-Plane Thermal Properties of Transition Metal Dichalcogenides. Appl. Phys. Lett. 2013, 102.
174. Jo, I.; Pettes, M. T.; Ou, E.; Wu, W.; Shi, L. Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 2014, 104.
175. Mavrokefalos, A.; Nguyen, N. T.; Pettes, M. T.; Johnson, D. C.; Shi, L. In-plane Thermal Conductivity of Disordered Layered WSe2 and (W)x(WSe2)y Superlattice Films. Appl. Phys. Lett. 2007, 91.
176. Moratone, C.; Varshney, V.; Gengler, J. J.; Hu, J.; Bultman, J. E.; Roy, A. K.; Farmer B. L.; Voevodin, A. A. Thermal Anisotropy in Nano-Crystalline MoS2 Thin Films. Phys. Chem. Chem. Phys. 2014, 16, 1008.
177. He, Q.; Zeng, Z.; Yin, Z.; Li, H.; Wu, S.; Huang, X.; Zhang, H. Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications. Small 2012, 8, 2994.

電子全文 電子全文(網際網路公開日期:20210315)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔