|
Chapter 1 Introduction [1] R.P. Feynman, "Plenty of Room at the Bottom," at the Annual Meeting of the American Physical Society on December 29th at the california Institute of Technology (1959). [2] N. Taniguchi, “On the Basic Concept of Nanotechnology,” Proc. Intl.Conf. Prod, Part II (1974) 18-23. [3] M.C. Daniel, D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104 (2004) 293-346. [4] J. Liu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, “Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries,” Angew. Chem. Int. Ed. 54 (2015) 9632-9636. [5] W. Lu, C.M. Lieber, “Nanoelectronics from the Bottom Up,” Nat. Mater. 6 (2007) 841-850. [6] C.C. Koch, “Top-down Synthesis of Nanostructured Materials: Mechanical and Thermal Processing Methods,” Rev. Adv. Mater. Sci. 5 (2003) 91-99. [7] G. Madhumitha, S.M. Roopan, “Devastated Crops: Multifunctional Efficacy for the Production of Nanoparticles,” J. Nanomater. 2013 (2013) 951858 [8] Hessen-Nanotech, “Application of Nanotechnologies in the Energy Sector,” from https://www.utwente.nl/mesaplus/nme/Introduction/ (2008) [9] X.F. Lu, C. Wang, Y. Wei, “One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications,” Small 5 (2009) 2349-2370. [10] Y.S. Zhao, H.B. Fu, F.Q. Hu, A.D. Peng, W.S. Yang, J.N. Yao, “Tunable Emission from Binary Organic One-Dimensional Nanomaterials: an Alternative Approach to White-Light Emission” Adv. Mater. 20 (2008) 1240-1240. [11] C.J. Murphy, T.K. Sau, A. Gole, C.J. Orendorff, “Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures,” Mrs Bull. 30 (2005) 349-355. [12] Tak, Y., S.J. Hong, J.S. Lee, K.J. Yong, “Fabrication of ZnO/CdS Core/Shell Nanowire Arrays for Efficient Solar Energy Conversion,” J. Mater. Chem. 19 (2009) 5945-5951. [13] W. Zang, Y.X. Nie, D. Zhu, P. Deng, L.L. Xing, XY. Xue, “Core–Shell In2O3/ZnO Nanoarray Nanogenerator as a Self-Powered Active Gas Sensor with High H2S Sensitivity and Selectivity at Room Temperature,” J. Phys. Chem. C 118 (2014) 9209-9216. [14] C.W. Huang, J.Y. Chen, C.H. Chiu, W.W. Wu, “Revealing Controllable Nanowire Transformation through Cationic Exchange for RRAM Application,” Nano Lett. 14 (2014) 2759-2763. [15] Y.R. Fang, Z.P. Li, Y.Z. Huang, S.P. Zhang, P. Nordlander, N.J. Halas, H.X. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett. 10 (2010) 1950-1954. [16] J.H. Lee, “Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview,” Sens. Actuators B Chem. 140 (2009) 319-336. [17] D.J. Chakrabarti, D. E. Laughlin, “The Cu-S (Copper-Sulfur) System,” Bull. Alloy Phase Diagr. 4 (1983) 254-271 [18] R.A.D. Pattrick, J.F.W. Mosselmans, J.M. Charnock, K.E.R. England, G.R. Helz, C.D. Garner, D.J. Vaughan, “The Structure of Amorphous Copper Sulfide Precipitates: An X-ray Absorption Study,” Geochim. Et. Cosmochim. Acta. 61 (1997) 2023-2036. [19] T.A. Miller, J.S. Wittenberg, H. Wen, S. Connor, Y. Cui, A.M. Lindenberg, “The Mechanism of Ultrafast Structural Switching in Superionic Copper (I) Sulphide Nanocrystals,” Nat. Commun. 4 (2013) 1369. [20] R.J. Goble, “The Relationship between Crystal-Structure, Bonding and Cell Dimensions in the Copper Sulfides,” Can. Mineral. 23 (1985) 61-76. [21] M. Pósfai, P.R. Buseck, “Djurleite, Digenite, and Chalcocite: Intergrowths and Transformations,” Am. Mineral. 79 (1994) 308-315. [22] Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, “Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals,” Nano Lett. 8 (2008) 2551-2555. [23] Z.Y. Zhan, C. Liu, L.X. Zheng, G.Z. Sun, B.S. Li, Q. Zhang, “Photoresponse of Multi-Walled Carbon Nanotube-Copper Sulfide (MWNT-CuS) Hybrid Nanostructures,” Phys. Chem. Chem. Phys. 13 (2011) 20471-20475. [24] Y.B. Li, W. Lu, Q. Huang, C. Li, W. Chen, “Copper Sulfide Nanoparticles for Photothermal Ablation of Tumor Cells,” Nanomedicine 5 (2010) 1161-1171. [25] J. Bai, X.E. Jiang, “A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments,” Analy. Chem. 85 (2013) 8095-8101. [26] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, “Quantized Conductance Atomic Switch,” Nature 433 (2005) 47-50. [27] Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono “Nanometer-Scale Switches Using Copper Sulfide.” Appl. Phys. Lett. 82 (2003) 3032. [28] X. Liu, M.T. Mayer, D. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103. [29] A. Nayak, T. Ohno,T. Tsuruoka, K. Terabe, T. Hasegawa, J.K. Gimzewski, M. Aono, “Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch,” Adv. Funct. Mater. 22 (2012) 3606-3613. [30] I. Valov, M.N. Kozicki, “Cation-Based Resistance Change Memory,” J. Phys. D: Appl. Phys. 46 (2013) 074005. [31] Pan, C.F., S. Niu, Y. Ding, L. Dong, R.M. Yu, Y. Liu, G. Zhu, Z.L. Wang, “Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect,” Nano Lett. 12 (2012) 3302-3307. [32] A. Rothwarf, A.M. Barnett, “Design Analysis of the Thin-Film CdS-Cu2S Solar Cell,” IEEE Trans. Electr. Dev. 24 (1977) 381-387. [33] Y.X. Zhao, H.C. Pan, Y.B. Lou, X.F. Qiu, J.J. Zhu, C. Burda,”Plasmonic Cu2-xS Nanocrystals Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides,” J. Am. Chem. Soc. 131 (2009) 4253-4261. [34] J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, “Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots,” Nat. Mater. 10 (2011) 361-366. [35] C. Ratanatawanate, A. Bui, K. Vu, K.J. Balkus “Low-Temperature Synthesis of Copper(II) Sulfide Quantum Dot Decorated TiO2 Nanotubes and Their Photocatalytic Properties,” J. Phys. Chem. C 115 (2011) 6175-6180. [36] Z.G. Cheng, Z.G. Cheng, S.Z. Wang, Q. Wang, B.Y. Geng, “A facile Solution Chemical Route to Self-Assembly of CuS Ball-Flowers and Their Application as an Efficient Photocatalyst,” CrystEngComm. 12 (2010) 144-149. [37] J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, “Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer,” Nano Lett. 11 (2011) 4774-4779. [38] J.B. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J.W. Ma, G. Fang, E.B. Zhu, H. Wu, L.X. Zhao, L.Y. Wang, Y. Huang, “Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions,” Nano Lett. 15 (2015) 6295-301. [39] D. Liang, “Memory Hierarchy,” from http://web.cs.ucla.edu/classes/winter13/- cs111/scribe/15b/. [40] K. Glas, “MRAM – The Birth of the Super Memory,” T.F.O.T. from http://thefutureofthings.com/3037-mram-the-birth-of-the-super-memory/. (2015) [41] M.A. Caldwell, R. Gnana, D. Jeyasingh, H.S.P. Wong, D.J. Milliron, “Nanoscale Phase Change Memory Materials,” Nanoscale 4 (2012) 4382-4392. [42] J.F. Scott, C.A.P. de Araujo, “Ferroelectric Memories,” Science 246 (1989) 1400-1405. [43] Y. Li, H.B. Lv, Q. Liu, S.B. Long, M. Wang, H.W. Xie, K.W. Zhang, “Bipolar One Diode-One Resistor Integration for High-Density Resistive Memory Applications,” Nanoscale 5 (2013) 4785-4789. [44] T.W. Hickmott, “Low‐Frequency Negative Resistance in Thin Anodic Oxide Films,” J. Appl. Phys. 33 (1962) 2669-2682. [45] W.W. Zhuang, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S.Q. Liu, N.J. Wu, A. Ignatiev, “Novel Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” International Electron Devices Meeting (2002) 193-196. [46] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, “The Missing Memristor Found,” Nature 453 (2008) 80-83. [47] J.J. Huang, G.L. Lin, C.W. Kuo, W.C. Chang, T.H. Hou, “Room-Temperature TiOx Oxide Diode for 1D1R Resistance-Switching Memory,” International Semiconductor Device Research Symposium (2009). [48] M.J. Lee, S. Seo, D.C. Kim, S.E. Ahn, D.H. Seo, I.K. Yoo, I.G. Baek, D.S. Kim, I.S. Byun, S.H. Kim, I.R. Hwang, J.S. Kim, S.H. Jeon, B.H. Park, “A Low-Temperature-Grown Oxide Diode as a New Switch Element for High-Density, Nonvolatile Memories,” Adv. Mater. 19 (2007) 73-76. [49] M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek, I.K. Yoo, “2-Stack ID-IR Cross-Point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” International Electron Devices Meeting (2007) 771-774. [50] S.C. Markham, “Photocatalytic Properties of Oxides,” J. Chem. Educ. 32 (1955) 540-543. [51] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238 (1972) 37-38. [52] K.C. Schwartzenberg, K.A. Gray, “Nanostructured Titania: the Current and Future Promise of Titania Nanotubes,” Catal. Sci. Technol. 2 (2012) 1617-1624. [53] M. Cottat , N. Thioune, A.M. Gabudean, N. Lidgi-Guigui, M. Focsan, S. Astilean, M.L. de la Chapelle, “Localized Surface Plasmon Resonance (LSPR) Biosensor for the Protein Detection,” Plasmonics 8 (2013) 699-704. [54] S. Butun, N.A. Cinel, E. Ozbay, “LSPR Enhanced MSM UV Photodetectors,” Nanotechnology 23 (2012) 444010. [55] Y.J. Lu, J.S. Kim, H.Y. Chen, C.H. Wu, N. Dabidian, C.E. Sanders, C.Y. Wang, M.Y. Lu, B.H. Li, X.G. Qiu, W.H. Chang, L.J. Chen, G. Shvets, C.K. Shih, S.G. Gwo, “Plasmonic Nanolaser Using Epitaxially Grown Silver Film,” Science 337 (2012) 450-453. [56] G.Y. Chen, H. Ågren, T.Y. Ohulchanskyy, P.N. Prasad, “Light Up Converting Core-Shell Nanostructures: Nanophotonic Control for Emerging Applications,” Chem. Soc. Rev. 44 (2015) 1680-1713. [57] J.L. Wu, F.C. Chen, Y.S. Hsiao, F.C. Chien, P.L. Chen, C.H. Kuo, M.H. Huang, C.S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” Acs Nano 5 (2011) 959-967. [58] Z.W. Seh, S.H. Liu, M. Low, S.Y. Zhang, Z.L. Liu, A. Mlayah, M.Y. Han, “Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation,” Adv. Mater. 24 (2012) 2310-2314.
Chapter 2 Experimental Procedures [1] Y.D. Li, Z.Y. Wang, Y. Ding, “Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine,” Inorg. Chem. 38 (1999) 4737-4740. [2] Y.D. Li, D. Yi, H.W. Liao, Y.T. Qian, “Room-Temperature Conversion Route to Nanocrystalline Mercury Chalcogenides HgE (E = S,Se,Te),” J. Phys. Chem. Solids 60 (1999) 965-968. [3] J. Chen, S.Z. Deng, N.S. Xu, S.H. Wang, X.G. Wen, S.H. Yang, C.L. Yang, J.N. Wang, W.K. Ge, “Field Emission from Crystalline Copper Sulphide Nanowire Arrays,” Appl. Phys. Lett. 80 (2002) 3620-3622. [4] C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, L.J. Chen, “Direct Growth of High-Rate Capability and High Capacity Copper Sulfide Nanowire Array Cathodes for Lithium-Ion Batteries,” J. Mater. Chem. 20 (2010) 6638-6645. [5] X. Liu, M.T. Mayer, D. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103. [6] A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, P.D. Yang, “Core-Shell CdS-Cu2S Nanorod Array Solar Cells,” Nano Lett. 15 (2015) 4096-4101. [7] S.F. Ledenkov, V.A. Sharnin, G.V. Chistyakova, “Effect of Hydrogen Bonding of Solvent on the Thermodynamic Stability of Cadmium Ethylenediamine Complexes,” Russ. Chem. Bull. 53 (2004) 758-765. [8] R.J. Davey, S.N. Black, L.A. Bromley, D. Cottier, B. Dobbs, J.E. Rout, “Molecular Design Based on Recognition at Inorganic Surfaces,” Nature 353 (1991) 549-550. [9] B.L. Cao, Y. Jiang, C. Wang, W.H. Wang, L.H. Wang, M. Niu, W.J. Zhang, “Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays,” Adv. Func. Mater. 17 (2007) 1501-1506. [10] K.D. Karlin, S. Kaderli, A.D. Zuberbuhler, “Kinetics and Thermodynamics of Copper(I)/Dioxygen Interaction,” Accounts Chem. Res. 30 (1997) 139-147. [11] K.W. Huang, J.H. Wang, H.C. Chen, H.C. Hsu, Y.C. Chang, M.Y. Lu, C.Y. Lee, L.J. Chen, “Supramolecular Nanotubes with High Thermal Stability: a Rigidity Enhanced Structure Transformation Induced by Electron-Beam Irradiation and Heat,” J. Mater. Chem. 17 (2007) 2307-2312. [12] R.D. Robinson, B. Sadtler, D.O. Demcnenko, C.L. Erdonmez, L.W. Wang, A.P. Alivisatos, “Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange,” Science 317 (2007) 355-358. [13] P.K. Jain, L. Amirav, S. Aloni, A.P. Alivisatos, “Nanoheterostructure Cation Exchange: Anionic Framework Conservation,” J. Am. Chem. Soc. 132 (2010) 9997-9999. [14] J.M. Luther, H. Zheng, B. Sadtler, A.P. Alivisatos, “Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions,” J. Am. Chem. Soc. 131 (2009) 16851-16857.
Chapter 3 Fabrication and the Excellent Resistance Switching Characteristics of Cu2S Nanowire Arrays [1] S.H. Lee, C.K. Jeong, G.T. Hwang, K.J. Lee, “Self-Powered Flexible Inorganic Electronic System,” Nano Energy 14 (2015) 111-125. [2] A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J.K. Gimzewski, M. Aono, “Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch,” Adv. Funct. Mater. 22 (2012) 3606-3613. [3] C. Sealy, “Battery and Memory Rolled into One,” Nano Energy 2 (2013) 437-438. [4] I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, “Nanobatteries in Redox-Based Resistive Switches Require Extension of Memristor Theory,” Nat. Commun. 4 (2013) 1771. [5] H.T. Sun, Q. Liu, C.F. Li, S.B. Long, H.B. Lv, C. Bi, Z.L. Huo, L. Li, M. Liu, “Direct Observation of Conversion Between Threshold Switching and Memory Switching Induced by Conductive Filament Morphology,” Adv. Funct. Mater. 24 (2014) 5679-5686. [6] N.R. Hosseini, J.S. Lee, “Resistive Switching Memory Based on Bioinspired Natural Solid Polymer Electrolytes,” ACS Nano 9 (2015) 419-426. [7] J.Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett. 13 (2013) 3671-3677. [8] I Valov, M.N. Kozicki, “Cation-Based Resistance Change Memory,” J. Physics D Appl. Phys. 46 (2013) 074005. [9] Y.C. Yang, P. Gao, S. Gaba, T. Chang, X.Q. Pan, W. Lu, “Observation of Conducting Filament Growth in Nanoscale Resistive Memories,” Nat. Commun. 3 (2012) 732. [10] Q. Liu, M. Liu, S.B. Long, H.B. Lv, W. Wang, J.B. Niu, Z.L. Huo, J.N. Chen, M. Liu, “Controllable Growth of Nanoscale Conductive Filaments in Solid Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode,” ACS Nano 4 (2010) 6162-6168. [11] X.H. Liu, M.T. Mayer, D.W. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103.
Chapter 4 Multilevel Resistance Switching of Individual Cu2S Nanowires with Inert Electrodes [1] H. Wang , F.B. Meng, Y.R. Cai , L.Y. Zheng , Y.G. Li , Y.J. Liu , Y.Y. Jiang , X.T. Wang , X.D. Chen, “Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory,” Adv. Mater. 25 (2013) 5498-5503. [2] J. Yao, Z.Z. Sun, L. Zhong, D. Natelson, J.M. Tour, “Resistive Switches and Memories from Silicon Oxide,” Nano Lett. 10 (2010) 4105-4110. [3] K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, S. Rahong, G. Meng, M. Horprathum, B. Xu, F.W. Zhuge, Y. He, B.H. Park, T. Kawai, “Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides,” Nano Lett. 12 (2012) 5684-5690. [4] J. Yao, Z. Lin, L. Zhong, D. Natelson, J.M. Tour, “Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes,” ACS Nano 3 (2009) 4122-4126. [5] X.H. Liu, M.T. Mayer, D.W. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103. [6] Z.W. Jin, G. Liu, J.Z. Wang, “Nonvolatile Resistive Memory Devices Based on Ag,” J. Mater. Chem. C 1 (2013) 3282-3286. [7] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, “The Missing Memristor Found,” Nature 453 (2008) 80-83. [8] J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, “Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices,” Nat. Nanotechnol. 3 (2008) 429-433. [9] H.T. Sun, Q. Liu, C.F. Li, S.B. Long, H.B. Lv, C. Bi, Z.L. Huo, L. Li, M. Liu, “Direct Observation of Conversion Between Threshold Switching and Memory Switching Induced by Conductive Filament Morphology,” Adv. Funct. Mater. 24 (2014) 5679-5686. [10] N.R. Hosseini, J.S. Lee, “Resistive Switching Memory Based on Bioinspired Natural Solid Polymer Electrolytes,” ACS Nano 9 (2015) 419-426. [11] J.Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett. 13 (2013) 3671-3677. [12] I. Valov, M.N. Kozicki, “Cation-Based Resistance Change Memory,” J. Phys. D Appl. Phys. 46 (2013) 074005. [13] K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J.S. Kim, B.H. Park, “Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire,” Nano Lett. 10 (2010) 1359-1363. [14] R. Waser, M. Aono, “Nanoionics-Based Resistive Switching Memories,” Nat. Mater. 6 (2007) 833-840 [15] Y.C. Chen, Y.L. Chung, B.T. Chen, W.C. Chen, J.S. Chen, “Revelation on the Interrelated Mechanism of Polarity-Dependent and Multilevel Resistive Switching in TaOx-Based Memory Devices,” J. Phys. Chem. C 117 (2013) 5758-5764. [16] Y. Bekenstein, K.Vinokurov, S. Keren-Zur, I. Hadar, Y. Schilt, U. Raviv, O. Millo, U. Banin, “Thermal Doping by Vacancy Formation in Copper Sulfide Nanocrystal Arrays,” Nano Lett. 14 (2014) 1349-1353. [17] H.M. Zheng, J.B. Rivest, T.A. Miller, B. Sadtler, A. Lindenberg, M.F. Toney, L.W. Wang, C. Kisielowski, A.P. Alivisatos, “Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod,” Science 333 (2011) 206-209. [18] S.Y. Miyatani, Y. Suzuki, “On the Electrical Conductivity of Cuprous Sulfide Experiment,” J. Phys. Soc. Jpn. 8 (1953) 680-681. [19] I. Yokota, “On the Electrical Conductivity of Cuprous Sulfide A Diffusion Theory,” J. Phys. Soc. Jpn. 8 (1953) 596-602.
Chapter 5 Production of H2 from Ammonia Borane Solution Utilizing Surface Plasmon Resonance Enhancement of Photocatalytic Activity with Pd Nanoparticle Decorated-Cu2-xS Nanowires [1] J. A. Faucheaux, A. L. D. Stanton, P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5 (2014) 976-85. [2] J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, “Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots,” Nat. Mater. 10 (2011) 361-366. [3] A. Comin, L. Manna, “New Materials for Tunable Plasmonic Colloidal Nanocrystals,” Chem. Soc. Rev. 43 (2014) 3957-3975. [4] D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, L. Manna, “Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2-xSe Nanocrystals,” J. Am. Chem. Soc. 133 (2011) 11175-11180. [5] M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R Ramesh, A. P. Alivisatos, “Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition,” Phys. Rev. Lett. 111 (2013) 037401. [6] A. M. Schimpf, N. Thakkar, C. E. Gunthardt, D. J. Masiello, D. R. Gamelin. “Charge-Tunable Quantum Plasmons in Colloidal Semiconductor Nanocrystals,” ACS Nano 8 (2014) 1065-1072. [7] J. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J. Ma, G. Fang, E. Zhu, H. Wu, L. Zhao, L. Wang, Yu Huang, “Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions,” Nano Lett. 15 (2015) 6295-6301. [8] C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, Z. L. Wang, “Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect,” Nano Lett. 12 (2012) 3302-3307. [9] D. Zhu, A. Tang, H. Ye, M. Wang, C. Yanga, F. Teng, “Tunable Near-Infrared Localized Surface Plasmon Resonances of Djurleite Nanocrystals: Effects of Size, Shape, Surface-Ligands and Oxygen Exposure Time,” J. Mater. Chem. C 3 (2015) 6686-6691. [10] Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, L. Manna, “Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions,” J. Am. Chem. Soc. 135 (2013) 17630-17637. [11] Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, “Plasmonic Cu2-xS Nanocrystals Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides,” J. Am. Chem. Soc. 131 (2009) 4253-4261. [12] S. W. Hsu, W. Bryks, A. R. Tao, “Effects of Carrier Density and Shape on the Localized Surface Plasmon Resonances of Cu2–xS Nanodisks,” Chem. Mater. 24 (2012) 3765-3771. [13] P. H. Liu, C. C. Lin, A. Manekkathodi, L. J. Chen, “Multilevel Resistance Switching of Individual Cu2S Nanowires with Inert Electrodes,” Nano Energy 15 (2015) 362-368. [14] L. Reijnen, B. Meester, F. de Lange, J. Schoonman, A. Goossens, “Comparison of CuxS Films Grown by Atomic Layer Deposition and Chemical Vapor Deposition,” Chem. Mater. 17 (2005) 2724-2728. [15] S. Jiao, L. Xu, K. Jiang, D. Xu, “Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating,” Adv. Mater. 18 (2006) 1174-1177. [16] C.S. Tan, C.H. Hsiao, S.C.Wang, P.H. Liu, M.Y. Lu, M.H. Huang, H. Ouyang, L.J. Chen, “Sequential Cation Exchange Generated Superlattice Nanowires Forming Multiple PN Heterojunctions,” ACS Nano 8 (2014) 9422-9426. [17] M. Navlani-García, M. Martis, D. Lozano-Castelló, D. Cazorla-Amorós, K. Moribc, H. Yamashita, “Pd/Zeolite-Based Catalysts for the Preferential CO Oxidation Reaction: Ion-Exchange, Si/Al and Structure Effect,” Catal. Sci. Technol., 2016 Advance Article [18] M. Navlani-García, I. Miguel-García, Á. Berenguer-Murcia, D. Lozano-Castelló, D. Cazorla-Amorós, H. Yamashita, “Investigation of Pd Nanoparticles Supported on Zeolites for Hydrogen Production from Formic Acid Dehydrogenation,” Catal. Sci. Technol. 5 (2015) 364-371. [19] M. Wen, Y. Kuwahara, K. Mori, D. Zhang, H. Li, H. Yamashita., “Synthesis of Ce Ions Doped Metal–Organic Framework for Promoting Catalytic H2 Production from Ammonia Borane under Visible Light Irradiation,” J. Mater. Chem. A 3 (2015) 14134-14141. [20] M. Chandra, Q. Xu, “Dissociation and Hydrolysis of Ammonia-Borane with Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System,” J. Power Sources 159 (2006) 855-860.
Chapter 7 Future Prospects [1] H. Zheng, J.B. Rivest, T.A. Miller, B. Sadtler, B. Lindenberg, M.F. Toney, I.W. Wang, C. Kisielowski, P. Alivisatos, “Observation of Transient Structural-transformation Dynamics in a Cu2S Nanorod,” Science 333 (2011) 206-209 [2] J.B. Rivest, L.K. Fong, P.K. Jain, M.F. Toney, P. Alivisatos, “Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide,” Phys. Chem. Lett. 2 (2011) 2402-2406. [3] C.S. Tan, C.H. Hsiao, S.C.Wang, P.H. Liu, M.Y. Lu, M.H. Huang, H. Ouyang, L.J. Chen, “Sequential Cation Exchange Generated Superlattice Nanowires Forming Multiple PN Heterojunctions,” ACS Nano 8 (2014) 9422-9426.
|