跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佩宣
研究生(外文):Liu, Pei Hsuan
論文名稱:硫化銅奈米線的製備與能源元件之應用
論文名稱(外文):The Synthesis of Copper Sulfides Nanowires and Their Applications in Energy Devices
指導教授:陳力俊陳力俊引用關係
指導教授(外文):Chen, Lih Juann
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:93
中文關鍵詞:奈米線電阻轉換電漿共振光催化
外文關鍵詞:nanowiresresistance switchingplasmonicphotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要探討p型半導體-硫化銅奈米線於能源元件(可變式電阻記憶體以及光催化產氫)方面的應用與探討。
第一部分為硫化銅奈米線陣列之合成以及其電阻轉換效應表現的研究。我們以一個低成本、低溫、避免使用毒性化合物的方法,直接合成大面積均勻單晶奈米線於銅片上,此樣品可直接製作成可變電阻式記憶體,我們可以得到相當優異的元件表現(啟動電壓 < 0.2 V,重置電壓 < -0.1 V,元件循環 > 103 次,高低電阻比 > 105),接著在以原子層沉積系統製作與氧化鋅結合的自整流p-n介面,作為附帶有選擇器的1D1R結構,此結構亦有良好的電性表現與淺力(啟動電壓 < 1.3 V,重置電壓 < -0.6 V,高低電阻比 > 105)。
第二部份我們延續第一部分可變式電阻式記憶體的研究,我們利用臨場掃描式電子顯微鏡觀察單根硫化銅奈米線電阻轉換的機制,跳開電化學金屬化(ECM)的機制框架,我們以兩根鈍性金屬做為導電電極,發現硫化銅奈米線可以自身存在的銅原子以及銅缺陷使電阻作可變轉換,且於高低限制電流下,其個別表現出由銅離子或銅缺陷主導電阻轉換的情形,除了兩者在電性曲線以及穿透式電子顯微鏡結構分析下的不同,金屬性或離子性的差異亦可以由低阻態電阻值隨溫度變化的趨勢所觀察出。且藉由改變限制電流,使的單根硫化銅奈米線有多狀態的儲存方式(multi-state storage),可增加可變式電阻記憶體的記憶密度。
第三部分是利用調變銅缺陷量使的硫化銅帶有局部表面電漿共振效應,進而對光催化效益之提升。我們以陽離子交換法合成可調變銅含量的硫化銅奈米線,樣品成分組成如Cu2S、Cu7S4、CuS等等。除了結構成分的鑑定外,可見光-近紅外光光譜的吸收曲線亦呈現出其隨著銅缺陷含量變化的表面電漿共振吸收鋒,我們將樣品投入可見光光催化分解胺硼烷產氫的量測中,可以得到相當高效率的催化特性,其中,成分分布主要由Cu7S4組成的樣品三更是達到最高的效率值(25.54 mmol/g.h)。緊接著將鈀奈米顆粒附著於各樣品的表面上,大幅提升實驗樣品光催化效益(鈀-樣品三: 157.04 mmol/g.h)。

The p-type copper sulfides system with unique properties and the corresponding applications have been investigated in the thesis.
In first part, Cu2S nanowire arrays have been fabricated via a facile hydrothermal method on copper substrate. The copper substrate could be served as electrode in ReRAM devices, in which the excellent resistive switching (RS) performance (Vset < 0.2 V, Vreset < -0.1 V, retention > 103, on-off ration > 105) could be demonstrated. Then ZnO branched structure has been deposited on Cu2S for the self-rectifying p-n junction, as the selector of 1D1R structure to prevent the leakage issue. The 1D1R structure also exhibited promising performance (Vset < 1.3 V, Vreset < -0.6 V, on-off ration > 105).
In the second part, multilevel resistance has been demonstrated for devices based on individual Cu2S nanowire with two inert (W) electrodes. Up to five levels can be achieved by varying the compliance current (C.C.), significantly enhancing the data storage density. Compared to previous works on multilevel memory, the present devices exhibit outstanding performances with lower operating voltage (Vset < 0.6 V at IC.C.= 1 μA), higher on-off ratio (>105) and longer retention time (> 103 min). From in-situ SEM and TEM analysis, the RS behavior of Cu2S nanowires under high C.C. (> 1 μA) has been found to be dominated by Cu ion diffusion inside the Cu2S nanowire. On the other hand, holes and vacant Cu lattice sites control the RS under low C.C. (< 800 nA). The results of temperature-dependent measurements of resistivity also strongly support the proposed mechanisms. The facile fabrication of Cu2S nanowires with the capability of multilevel switching shall facilitate the realization of high density memristor applications.
In the third part, localized surface plasmon resonances (LSPR) in near-infrared (NIR) region have been extensively studied for copper chalcogenide nanostructures, not only for the absorption enhancement but also tunable LSPR characteristics with their free carrier concentrations or defects. In the present work, one-step cation exchange method has been used to synthesize Cu2-xS nanowires with x varied between 0 and 1, including Cu2S, Cu7S4 and CuS and so forth. The plasmonic band of Cu2-xS nanowires shifts to a shorter wavelength with the increase in x, as observed in VIS-NIR spectra, which is attributed to the increase in density of copper vacancies. The Cu2-xS nanowires have been used as catalysts towards the photocatalytic generation of H2 from ammonia borane (AB). Among samples with different Cu-S compositions, Sample 3 which is mainly composed by Cu7S4 exhibited the highest activity in terms of H2 evolution rate (25.54 mmol/g.h). Moreover, a marked enhancement of the H2 evolution rate (157.04 mmol/g.h) could be achieved after decorating the Cu2-xS nanowires with Pd nanoparticles to form the hybrid structures. The results of the present investigation may lead to an effective strategy for the design and development of LSPR materials for photocatalytic applications.

Contents Ⅰ
Abstract Ⅴ
List of Abbreviations and Acronyms Ⅸ

Chapter 1 Introduction
1.1 Nanotechnology 1
1.2 Nanostructures 4
1.2.1 One-Dimensional Nanostructures 4
1.2.2 Semiconductor Nanowires 4
1.3 Basic Properties of Copper Sulfides (Cu2S and Cu2-xS) 6
1.3.1 Crystal Structure 6
1.3.2 Properties and Applications 9
1.3.2.1 Resistive Switching Properties 10
1.3.2.2 Photocatalytic Properties 10
1.4 Resistance Random Access Memory (ReRAM) 11
1.4.1 Background 11
1.4.2 Development 13
1.4.3 Behaviors and Mechanisms 14
1.4.4 Multi-level Storage 15
1.4.5 One Diode One Resistor (1D1R) 15
1.5 Photocatalysis 16
1.5.1 Background 16
1.5.2 Mechanism 17
1.5.3 Localized Surface Plasmon Resonances (LSPR) 18

Chapter 2 Experimental Procedures
2.1. Experimental Methods for Copper Sulfides Synthesis 21
2.1.1 Hydrothermal Method 21
2.1.2 Cation Exchange 23
2.2 Experimental Systems 24
2.2.1 Heating Furnace 24
2.2.2 Scanning Electron Microscope (SEM) 24
2.2.3 Transmission Electron Microscope (TEM) 25
2.2.4 Energy Dispersive Spectrometer (EDS) 25
2.2.5 X-ray Diffractometry (XRD) 26
2.2.6 Current-Voltage (I-V) Measurement 26
2.2.7 Nano-Manipulator Measurement System 28
2.2.8 Gas Chromatography (GC) System 28

Chapter 3 Fabrication and the Excellent Resistance Switching Characteristics of Cu2S Nanowire Arrays
3.1 Motivation 29
3.2 Experimental Procedures 30
3.3 Results and Discussion 31

Chapter 4 Multilevel Resistance Switching of Individual Cu2S Nanowires with Inert Electrodes
4.1 Motivation 37
4.2 Experimental Procedures 38
4.3 Results and Discussion 39

Chapter 5 Surface Plasmon Resonance Enhancement of Production of H2 from Ammonia Borane Solution with Tunable Cu2-xS Nanowires Decorated by Pd Nanoparticles
5.1 Motivation 54
5.2 Experimental Procedures 56
5.3 Results and Discussion 58

Chapter 6 Summary and Conclusion
6.1 Fabrication and the Excellent Resistance Switching Characteristics of Cu2S Nanowire Arrays 72
6.2 Multilevel Resistance Switching of Individual Cu2S Nanowires with Inert Electrode 73
6.3 Surface Plasmon Resonance Enhancement of Production of H2 from Ammonia Borane Solution with Tunable Cu2-xS Nanowires Decorated by Pd Nanoparticles 74

Chapter 7 Future Prospects
7.1 In-situ Observation of One Diode One Resistor Structure 75
7.2 In-situ HTXRD and TEM Analysis of Phase Transition Behaviors in Cu2S Nanowires 76
7.3 The Investigations of Phase Transition in Resistive Switching Behaviors 78
References 79

Chapter 1 Introduction
[1] R.P. Feynman, "Plenty of Room at the Bottom," at the Annual Meeting of the American Physical Society on December 29th at the california Institute of Technology (1959).
[2] N. Taniguchi, “On the Basic Concept of Nanotechnology,” Proc. Intl.Conf. Prod, Part II (1974) 18-23.
[3] M.C. Daniel, D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104 (2004) 293-346.
[4] J. Liu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, “Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries,” Angew. Chem. Int. Ed. 54 (2015) 9632-9636.
[5] W. Lu, C.M. Lieber, “Nanoelectronics from the Bottom Up,” Nat. Mater. 6 (2007) 841-850.
[6] C.C. Koch, “Top-down Synthesis of Nanostructured Materials: Mechanical and Thermal Processing Methods,” Rev. Adv. Mater. Sci. 5 (2003) 91-99.
[7] G. Madhumitha, S.M. Roopan, “Devastated Crops: Multifunctional Efficacy for
the Production of Nanoparticles,” J. Nanomater. 2013 (2013) 951858
[8] Hessen-Nanotech, “Application of Nanotechnologies in the Energy Sector,” from https://www.utwente.nl/mesaplus/nme/Introduction/ (2008)
[9] X.F. Lu, C. Wang, Y. Wei, “One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications,” Small 5 (2009) 2349-2370.
[10] Y.S. Zhao, H.B. Fu, F.Q. Hu, A.D. Peng, W.S. Yang, J.N. Yao, “Tunable Emission from Binary Organic One-Dimensional Nanomaterials: an Alternative Approach to White-Light Emission” Adv. Mater. 20 (2008) 1240-1240.
[11] C.J. Murphy, T.K. Sau, A. Gole, C.J. Orendorff, “Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures,” Mrs Bull. 30 (2005) 349-355.
[12] Tak, Y., S.J. Hong, J.S. Lee, K.J. Yong, “Fabrication of ZnO/CdS Core/Shell Nanowire Arrays for Efficient Solar Energy Conversion,” J. Mater. Chem. 19 (2009) 5945-5951.
[13] W. Zang, Y.X. Nie, D. Zhu, P. Deng, L.L. Xing, XY. Xue, “Core–Shell In2O3/ZnO Nanoarray Nanogenerator as a Self-Powered Active Gas Sensor with High H2S Sensitivity and Selectivity at Room Temperature,” J. Phys. Chem. C 118 (2014) 9209-9216.
[14] C.W. Huang, J.Y. Chen, C.H. Chiu, W.W. Wu, “Revealing Controllable Nanowire Transformation through Cationic Exchange for RRAM Application,” Nano Lett. 14 (2014) 2759-2763.
[15] Y.R. Fang, Z.P. Li, Y.Z. Huang, S.P. Zhang, P. Nordlander, N.J. Halas, H.X. Xu, “Branched Silver Nanowires as Controllable Plasmon Routers,” Nano Lett. 10 (2010) 1950-1954.
[16] J.H. Lee, “Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview,” Sens. Actuators B Chem. 140 (2009) 319-336.
[17] D.J. Chakrabarti, D. E. Laughlin, “The Cu-S (Copper-Sulfur) System,” Bull. Alloy Phase Diagr. 4 (1983) 254-271
[18] R.A.D. Pattrick, J.F.W. Mosselmans, J.M. Charnock, K.E.R. England, G.R. Helz, C.D. Garner, D.J. Vaughan, “The Structure of Amorphous Copper Sulfide Precipitates: An X-ray Absorption Study,” Geochim. Et. Cosmochim. Acta. 61 (1997) 2023-2036.
[19] T.A. Miller, J.S. Wittenberg, H. Wen, S. Connor, Y. Cui, A.M. Lindenberg, “The Mechanism of Ultrafast Structural Switching in Superionic Copper (I) Sulphide Nanocrystals,” Nat. Commun. 4 (2013) 1369.
[20] R.J. Goble, “The Relationship between Crystal-Structure, Bonding and Cell Dimensions in the Copper Sulfides,” Can. Mineral. 23 (1985) 61-76.
[21] M. Pósfai, P.R. Buseck, “Djurleite, Digenite, and Chalcocite: Intergrowths and Transformations,” Am. Mineral. 79 (1994) 308-315.
[22] Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, “Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals,” Nano Lett. 8 (2008) 2551-2555.
[23] Z.Y. Zhan, C. Liu, L.X. Zheng, G.Z. Sun, B.S. Li, Q. Zhang, “Photoresponse of Multi-Walled Carbon Nanotube-Copper Sulfide (MWNT-CuS) Hybrid Nanostructures,” Phys. Chem. Chem. Phys. 13 (2011) 20471-20475.
[24] Y.B. Li, W. Lu, Q. Huang, C. Li, W. Chen, “Copper Sulfide Nanoparticles for Photothermal Ablation of Tumor Cells,” Nanomedicine 5 (2010) 1161-1171.
[25] J. Bai, X.E. Jiang, “A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments,” Analy. Chem. 85 (2013) 8095-8101.
[26] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, “Quantized Conductance Atomic Switch,” Nature 433 (2005) 47-50.
[27] Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono “Nanometer-Scale Switches Using Copper Sulfide.” Appl. Phys. Lett. 82 (2003) 3032.
[28] X. Liu, M.T. Mayer, D. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103.
[29] A. Nayak, T. Ohno,T. Tsuruoka, K. Terabe, T. Hasegawa, J.K. Gimzewski, M. Aono, “Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch,” Adv. Funct. Mater. 22 (2012) 3606-3613.
[30] I. Valov, M.N. Kozicki, “Cation-Based Resistance Change Memory,” J. Phys. D: Appl. Phys. 46 (2013) 074005.
[31] Pan, C.F., S. Niu, Y. Ding, L. Dong, R.M. Yu, Y. Liu, G. Zhu, Z.L. Wang, “Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect,” Nano Lett. 12 (2012) 3302-3307.
[32] A. Rothwarf, A.M. Barnett, “Design Analysis of the Thin-Film CdS-Cu2S Solar Cell,” IEEE Trans. Electr. Dev. 24 (1977) 381-387.
[33] Y.X. Zhao, H.C. Pan, Y.B. Lou, X.F. Qiu, J.J. Zhu, C. Burda,”Plasmonic Cu2-xS Nanocrystals Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides,” J. Am. Chem. Soc. 131 (2009) 4253-4261.
[34] J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, “Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots,” Nat. Mater. 10 (2011) 361-366.
[35] C. Ratanatawanate, A. Bui, K. Vu, K.J. Balkus “Low-Temperature Synthesis of Copper(II) Sulfide Quantum Dot Decorated TiO2 Nanotubes and Their Photocatalytic Properties,” J. Phys. Chem. C 115 (2011) 6175-6180.
[36] Z.G. Cheng, Z.G. Cheng, S.Z. Wang, Q. Wang, B.Y. Geng, “A facile Solution Chemical Route to Self-Assembly of CuS Ball-Flowers and Their Application as an Efficient Photocatalyst,” CrystEngComm. 12 (2010) 144-149.
[37] J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, “Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer,” Nano Lett. 11 (2011) 4774-4779.
[38] J.B. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J.W. Ma, G. Fang, E.B. Zhu, H. Wu, L.X. Zhao, L.Y. Wang, Y. Huang, “Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions,” Nano Lett. 15 (2015) 6295-301.
[39] D. Liang, “Memory Hierarchy,” from http://web.cs.ucla.edu/classes/winter13/- cs111/scribe/15b/.
[40] K. Glas, “MRAM – The Birth of the Super Memory,” T.F.O.T. from http://thefutureofthings.com/3037-mram-the-birth-of-the-super-memory/. (2015)
[41] M.A. Caldwell, R. Gnana, D. Jeyasingh, H.S.P. Wong, D.J. Milliron, “Nanoscale Phase Change Memory Materials,” Nanoscale 4 (2012) 4382-4392.
[42] J.F. Scott, C.A.P. de Araujo, “Ferroelectric Memories,” Science 246 (1989) 1400-1405.
[43] Y. Li, H.B. Lv, Q. Liu, S.B. Long, M. Wang, H.W. Xie, K.W. Zhang, “Bipolar One Diode-One Resistor Integration for High-Density Resistive Memory Applications,” Nanoscale 5 (2013) 4785-4789.
[44] T.W. Hickmott, “Low‐Frequency Negative Resistance in Thin Anodic Oxide Films,” J. Appl. Phys. 33 (1962) 2669-2682.
[45] W.W. Zhuang, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S.Q. Liu, N.J. Wu, A. Ignatiev, “Novel Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” International Electron Devices Meeting (2002) 193-196.
[46] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, “The Missing Memristor Found,” Nature 453 (2008) 80-83.
[47] J.J. Huang, G.L. Lin, C.W. Kuo, W.C. Chang, T.H. Hou, “Room-Temperature TiOx Oxide Diode for 1D1R Resistance-Switching Memory,” International Semiconductor Device Research Symposium (2009).
[48] M.J. Lee, S. Seo, D.C. Kim, S.E. Ahn, D.H. Seo, I.K. Yoo, I.G. Baek, D.S. Kim, I.S. Byun, S.H. Kim, I.R. Hwang, J.S. Kim, S.H. Jeon, B.H. Park, “A Low-Temperature-Grown Oxide Diode as a New Switch Element for High-Density, Nonvolatile Memories,” Adv. Mater. 19 (2007) 73-76.
[49] M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek, I.K. Yoo, “2-Stack ID-IR Cross-Point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications,” International Electron Devices Meeting (2007) 771-774.
[50] S.C. Markham, “Photocatalytic Properties of Oxides,” J. Chem. Educ. 32 (1955) 540-543.
[51] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238 (1972) 37-38.
[52] K.C. Schwartzenberg, K.A. Gray, “Nanostructured Titania: the Current and Future Promise of Titania Nanotubes,” Catal. Sci. Technol. 2 (2012) 1617-1624.
[53] M. Cottat , N. Thioune, A.M. Gabudean, N. Lidgi-Guigui, M. Focsan, S. Astilean, M.L. de la Chapelle, “Localized Surface Plasmon Resonance (LSPR) Biosensor for the Protein Detection,” Plasmonics 8 (2013) 699-704.
[54] S. Butun, N.A. Cinel, E. Ozbay, “LSPR Enhanced MSM UV Photodetectors,” Nanotechnology 23 (2012) 444010.
[55] Y.J. Lu, J.S. Kim, H.Y. Chen, C.H. Wu, N. Dabidian, C.E. Sanders, C.Y. Wang, M.Y. Lu, B.H. Li, X.G. Qiu, W.H. Chang, L.J. Chen, G. Shvets, C.K. Shih, S.G. Gwo, “Plasmonic Nanolaser Using Epitaxially Grown Silver Film,” Science 337 (2012) 450-453.
[56] G.Y. Chen, H. Ågren, T.Y. Ohulchanskyy, P.N. Prasad, “Light Up Converting Core-Shell Nanostructures: Nanophotonic Control for Emerging Applications,” Chem. Soc. Rev. 44 (2015) 1680-1713.
[57] J.L. Wu, F.C. Chen, Y.S. Hsiao, F.C. Chien, P.L. Chen, C.H. Kuo, M.H. Huang, C.S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” Acs Nano 5 (2011) 959-967.
[58] Z.W. Seh, S.H. Liu, M. Low, S.Y. Zhang, Z.L. Liu, A. Mlayah, M.Y. Han, “Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation,” Adv. Mater. 24 (2012) 2310-2314.

Chapter 2 Experimental Procedures
[1] Y.D. Li, Z.Y. Wang, Y. Ding, “Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine,” Inorg. Chem. 38 (1999) 4737-4740.
[2] Y.D. Li, D. Yi, H.W. Liao, Y.T. Qian, “Room-Temperature Conversion Route to Nanocrystalline Mercury Chalcogenides HgE (E = S,Se,Te),” J. Phys. Chem. Solids 60 (1999) 965-968.
[3] J. Chen, S.Z. Deng, N.S. Xu, S.H. Wang, X.G. Wen, S.H. Yang, C.L. Yang, J.N. Wang, W.K. Ge, “Field Emission from Crystalline Copper Sulphide Nanowire Arrays,” Appl. Phys. Lett. 80 (2002) 3620-3622.
[4] C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, L.J. Chen, “Direct Growth of High-Rate Capability and High Capacity Copper Sulfide Nanowire Array Cathodes for Lithium-Ion Batteries,” J. Mater. Chem. 20 (2010) 6638-6645.
[5] X. Liu, M.T. Mayer, D. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103.
[6] A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, P.D. Yang, “Core-Shell CdS-Cu2S Nanorod Array Solar Cells,” Nano Lett. 15 (2015) 4096-4101.
[7] S.F. Ledenkov, V.A. Sharnin, G.V. Chistyakova, “Effect of Hydrogen Bonding of Solvent on the Thermodynamic Stability of Cadmium Ethylenediamine Complexes,” Russ. Chem. Bull. 53 (2004) 758-765.
[8] R.J. Davey, S.N. Black, L.A. Bromley, D. Cottier, B. Dobbs, J.E. Rout, “Molecular Design Based on Recognition at Inorganic Surfaces,” Nature 353 (1991) 549-550.
[9] B.L. Cao, Y. Jiang, C. Wang, W.H. Wang, L.H. Wang, M. Niu, W.J. Zhang, “Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays,” Adv. Func. Mater. 17 (2007) 1501-1506.
[10] K.D. Karlin, S. Kaderli, A.D. Zuberbuhler, “Kinetics and Thermodynamics of Copper(I)/Dioxygen Interaction,” Accounts Chem. Res. 30 (1997) 139-147.
[11] K.W. Huang, J.H. Wang, H.C. Chen, H.C. Hsu, Y.C. Chang, M.Y. Lu, C.Y. Lee, L.J. Chen, “Supramolecular Nanotubes with High Thermal Stability: a Rigidity Enhanced Structure Transformation Induced by Electron-Beam Irradiation and Heat,” J. Mater. Chem. 17 (2007) 2307-2312.
[12] R.D. Robinson, B. Sadtler, D.O. Demcnenko, C.L. Erdonmez, L.W. Wang, A.P. Alivisatos, “Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange,” Science 317 (2007) 355-358.
[13] P.K. Jain, L. Amirav, S. Aloni, A.P. Alivisatos, “Nanoheterostructure Cation Exchange: Anionic Framework Conservation,” J. Am. Chem. Soc. 132 (2010) 9997-9999.
[14] J.M. Luther, H. Zheng, B. Sadtler, A.P. Alivisatos, “Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions,” J. Am. Chem. Soc. 131 (2009) 16851-16857.

Chapter 3 Fabrication and the Excellent Resistance Switching Characteristics of Cu2S Nanowire Arrays
[1] S.H. Lee, C.K. Jeong, G.T. Hwang, K.J. Lee, “Self-Powered Flexible Inorganic Electronic System,” Nano Energy 14 (2015) 111-125.
[2] A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J.K. Gimzewski, M. Aono, “Controlling the Synaptic Plasticity of a Cu2S Gap-Type Atomic Switch,” Adv. Funct. Mater. 22 (2012) 3606-3613.
[3] C. Sealy, “Battery and Memory Rolled into One,” Nano Energy 2 (2013) 437-438.
[4] I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, “Nanobatteries in Redox-Based Resistive Switches Require Extension of Memristor Theory,” Nat. Commun. 4 (2013) 1771.
[5] H.T. Sun, Q. Liu, C.F. Li, S.B. Long, H.B. Lv, C. Bi, Z.L. Huo, L. Li, M. Liu, “Direct Observation of Conversion Between Threshold Switching and Memory Switching Induced by Conductive Filament Morphology,” Adv. Funct. Mater. 24 (2014) 5679-5686.
[6] N.R. Hosseini, J.S. Lee, “Resistive Switching Memory Based on Bioinspired Natural Solid Polymer Electrolytes,” ACS Nano 9 (2015) 419-426.
[7] J.Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett. 13 (2013) 3671-3677.
[8] I Valov, M.N. Kozicki, “Cation-Based Resistance Change Memory,” J. Physics D Appl. Phys. 46 (2013) 074005.
[9] Y.C. Yang, P. Gao, S. Gaba, T. Chang, X.Q. Pan, W. Lu, “Observation of Conducting Filament Growth in Nanoscale Resistive Memories,” Nat. Commun. 3 (2012) 732.
[10] Q. Liu, M. Liu, S.B. Long, H.B. Lv, W. Wang, J.B. Niu, Z.L. Huo, J.N. Chen, M. Liu, “Controllable Growth of Nanoscale Conductive Filaments in Solid Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode,” ACS Nano 4 (2010) 6162-6168.
[11] X.H. Liu, M.T. Mayer, D.W. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103.

Chapter 4 Multilevel Resistance Switching of Individual Cu2S Nanowires with Inert Electrodes
[1] H. Wang , F.B. Meng, Y.R. Cai , L.Y. Zheng , Y.G. Li , Y.J. Liu , Y.Y. Jiang , X.T. Wang , X.D. Chen, “Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory,” Adv. Mater. 25 (2013) 5498-5503.
[2] J. Yao, Z.Z. Sun, L. Zhong, D. Natelson, J.M. Tour, “Resistive Switches and Memories from Silicon Oxide,” Nano Lett. 10 (2010) 4105-4110.
[3] K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, S. Rahong, G. Meng, M. Horprathum, B. Xu, F.W. Zhuge, Y. He, B.H. Park, T. Kawai, “Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides,” Nano Lett. 12 (2012) 5684-5690.
[4] J. Yao, Z. Lin, L. Zhong, D. Natelson, J.M. Tour, “Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes,” ACS Nano 3 (2009) 4122-4126.
[5] X.H. Liu, M.T. Mayer, D.W. Wang, “Negative Differential Resistance and Resistive Switching Behaviors in Cu2S Nanowire Devices,” Appl. Phys. Lett. 96 (2010) 223103.
[6] Z.W. Jin, G. Liu, J.Z. Wang, “Nonvolatile Resistive Memory Devices Based on Ag,” J. Mater. Chem. C 1 (2013) 3282-3286.
[7] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, “The Missing Memristor Found,” Nature 453 (2008) 80-83.
[8] J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, “Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices,” Nat. Nanotechnol. 3 (2008) 429-433.
[9] H.T. Sun, Q. Liu, C.F. Li, S.B. Long, H.B. Lv, C. Bi, Z.L. Huo, L. Li, M. Liu, “Direct Observation of Conversion Between Threshold Switching and Memory Switching Induced by Conductive Filament Morphology,” Adv. Funct. Mater. 24 (2014) 5679-5686.
[10] N.R. Hosseini, J.S. Lee, “Resistive Switching Memory Based on Bioinspired Natural Solid Polymer Electrolytes,” ACS Nano 9 (2015) 419-426.
[11] J.Y. Chen, C.L. Hsin, C.W. Huang, C.H. Chiu, Y.T. Huang, S.J. Lin, W.W. Wu, L.J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett. 13 (2013) 3671-3677.
[12] I. Valov, M.N. Kozicki, “Cation-Based Resistance Change Memory,” J. Phys. D Appl. Phys. 46 (2013) 074005.
[13] K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J.S. Kim, B.H. Park, “Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire,” Nano Lett. 10 (2010) 1359-1363.
[14] R. Waser, M. Aono, “Nanoionics-Based Resistive Switching Memories,” Nat. Mater. 6 (2007) 833-840
[15] Y.C. Chen, Y.L. Chung, B.T. Chen, W.C. Chen, J.S. Chen, “Revelation on the Interrelated Mechanism of Polarity-Dependent and Multilevel Resistive Switching in TaOx-Based Memory Devices,” J. Phys. Chem. C 117 (2013) 5758-5764.
[16] Y. Bekenstein, K.Vinokurov, S. Keren-Zur, I. Hadar, Y. Schilt, U. Raviv, O. Millo, U. Banin, “Thermal Doping by Vacancy Formation in Copper Sulfide Nanocrystal Arrays,” Nano Lett. 14 (2014) 1349-1353.
[17] H.M. Zheng, J.B. Rivest, T.A. Miller, B. Sadtler, A. Lindenberg, M.F. Toney, L.W. Wang, C. Kisielowski, A.P. Alivisatos, “Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod,” Science 333 (2011) 206-209.
[18] S.Y. Miyatani, Y. Suzuki, “On the Electrical Conductivity of Cuprous Sulfide Experiment,” J. Phys. Soc. Jpn. 8 (1953) 680-681.
[19] I. Yokota, “On the Electrical Conductivity of Cuprous Sulfide A Diffusion Theory,” J. Phys. Soc. Jpn. 8 (1953) 596-602.

Chapter 5 Production of H2 from Ammonia Borane Solution Utilizing Surface Plasmon Resonance Enhancement of Photocatalytic Activity with Pd Nanoparticle Decorated-Cu2-xS Nanowires
[1] J. A. Faucheaux, A. L. D. Stanton, P. K. Jain, “Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities,” J. Phys. Chem. Lett. 5 (2014) 976-85.
[2] J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, “Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots,” Nat. Mater. 10 (2011) 361-366.
[3] A. Comin, L. Manna, “New Materials for Tunable Plasmonic Colloidal Nanocrystals,” Chem. Soc. Rev. 43 (2014) 3957-3975.
[4] D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, L. Manna, “Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2-xSe Nanocrystals,” J. Am. Chem. Soc. 133 (2011) 11175-11180.
[5] M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R Ramesh, A. P. Alivisatos, “Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition,” Phys. Rev. Lett. 111 (2013) 037401.
[6] A. M. Schimpf, N. Thakkar, C. E. Gunthardt, D. J. Masiello, D. R. Gamelin. “Charge-Tunable Quantum Plasmons in Colloidal Semiconductor Nanocrystals,” ACS Nano 8 (2014) 1065-1072.
[7] J. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J. Ma, G. Fang, E. Zhu, H. Wu, L. Zhao, L. Wang, Yu Huang, “Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions,” Nano Lett. 15 (2015) 6295-6301.
[8] C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, Z. L. Wang, “Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect,” Nano Lett. 12 (2012) 3302-3307.
[9] D. Zhu, A. Tang, H. Ye, M. Wang, C. Yanga, F. Teng, “Tunable Near-Infrared Localized Surface Plasmon Resonances of Djurleite Nanocrystals: Effects of Size, Shape, Surface-Ligands and Oxygen Exposure Time,” J. Mater. Chem. C 3 (2015) 6686-6691.
[10] Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta, S. Ghosh, T. Pellegrino, L. Manna, “Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions,” J. Am. Chem. Soc. 135 (2013) 17630-17637.
[11] Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, “Plasmonic Cu2-xS Nanocrystals Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides,” J. Am. Chem. Soc. 131 (2009) 4253-4261.
[12] S. W. Hsu, W. Bryks, A. R. Tao, “Effects of Carrier Density and Shape on the Localized Surface Plasmon Resonances of Cu2–xS Nanodisks,” Chem. Mater. 24 (2012) 3765-3771.
[13] P. H. Liu, C. C. Lin, A. Manekkathodi, L. J. Chen, “Multilevel Resistance Switching of Individual Cu2S Nanowires with Inert Electrodes,” Nano Energy 15 (2015) 362-368.
[14] L. Reijnen, B. Meester, F. de Lange, J. Schoonman, A. Goossens, “Comparison of CuxS Films Grown by Atomic Layer Deposition and Chemical Vapor Deposition,” Chem. Mater. 17 (2005) 2724-2728.
[15] S. Jiao, L. Xu, K. Jiang, D. Xu, “Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating,” Adv. Mater. 18 (2006) 1174-1177.
[16] C.S. Tan, C.H. Hsiao, S.C.Wang, P.H. Liu, M.Y. Lu, M.H. Huang, H. Ouyang, L.J. Chen, “Sequential Cation Exchange Generated Superlattice Nanowires Forming Multiple PN Heterojunctions,” ACS Nano 8 (2014) 9422-9426.
[17] M. Navlani-García, M. Martis, D. Lozano-Castelló, D. Cazorla-Amorós, K. Moribc, H. Yamashita, “Pd/Zeolite-Based Catalysts for the Preferential CO Oxidation Reaction: Ion-Exchange, Si/Al and Structure Effect,” Catal. Sci. Technol., 2016 Advance Article
[18] M. Navlani-García, I. Miguel-García, Á. Berenguer-Murcia, D. Lozano-Castelló, D. Cazorla-Amorós, H. Yamashita, “Investigation of Pd Nanoparticles Supported on Zeolites for Hydrogen Production from Formic Acid Dehydrogenation,” Catal. Sci. Technol. 5 (2015) 364-371.
[19] M. Wen, Y. Kuwahara, K. Mori, D. Zhang, H. Li, H. Yamashita., “Synthesis of Ce Ions Doped Metal–Organic Framework for Promoting Catalytic H2 Production from Ammonia Borane under Visible Light Irradiation,” J. Mater. Chem. A 3 (2015) 14134-14141.
[20] M. Chandra, Q. Xu, “Dissociation and Hydrolysis of Ammonia-Borane with Solid Acids and Carbon Dioxide: An Efficient Hydrogen Generation System,” J. Power Sources 159 (2006) 855-860.

Chapter 7 Future Prospects
[1] H. Zheng, J.B. Rivest, T.A. Miller, B. Sadtler, B. Lindenberg, M.F. Toney, I.W. Wang, C. Kisielowski, P. Alivisatos, “Observation of Transient Structural-transformation Dynamics in a Cu2S Nanorod,” Science 333 (2011) 206-209
[2] J.B. Rivest, L.K. Fong, P.K. Jain, M.F. Toney, P. Alivisatos, “Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide,” Phys. Chem. Lett. 2 (2011) 2402-2406.
[3] C.S. Tan, C.H. Hsiao, S.C.Wang, P.H. Liu, M.Y. Lu, M.H. Huang, H. Ouyang, L.J. Chen, “Sequential Cation Exchange Generated Superlattice Nanowires Forming Multiple PN Heterojunctions,” ACS Nano 8 (2014) 9422-9426.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊