跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:任頤庭
研究生(外文):Ren, Yi Ting
論文名稱:以全正色散摻鐿光纖雷射啁啾放大系統產生高功率亞皮秒脈衝之研究
論文名稱(外文):Generation of High-Power Sub-picosecond Pulses by Chirped-Pulse Amplification Technique Based on a Dual-Stage Yitterbium-Doped Polarization Maintaining Fiber Amplifier Seeded by Picosecond All-Normal Dispersion Yb-Fiber Laser
指導教授:潘犀靈
指導教授(外文):Pan, Ci Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:啁啾脈衝放大器摻鐿光纖放大器全正色散被動鎖模光纖雷射次皮秒脈衝保偏光纖
外文關鍵詞:Chirped-pulse amplificationYb-doped fiber amplifierAll-normal dispersion fiber laserSub-picosecond pulsesPolarization maintaining fibers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討由全保偏(polarization-maintaining)光纖構成之二階摻鐿光纖啁啾放大系統放大皮秒級全正色散(all-normal dispersion)非保偏被動鎖模( passive mode-locked)光纖雷射。種子光源輸出之功率為50毫瓦、脈衝寬度為15皮秒。兩級光纖放大器由核直徑分別為10微米及30微米,長度分別為7公尺及5公尺之保偏光纖所構成,最大輸出功率為20瓦。脈衝能量放大後,再以槽密度(groove density)為每毫米1600 條之穿透式光柵對進行色散補償。實驗上之結果顯示,由於嚴重之非線性效應及第三階色散項之影響,我們無法將高能量之脈衝壓縮至亞皮秒尺度,但經將光纖放大器之光纖由普通光纖置換成保偏光纖後,由於偏振態在放大器出口保持高度線性偏極化且偏振穩定性高,能量不因光柵之偏振選擇性而損失,脈衝能量的使用效率顯著提升50%以上。於最佳之第二階及第三階色散補償狀態之下,我們得到最高尖峰功率為90千瓦、半高全寬(full width half maximum)為1.7皮秒之脈衝,其中總脈衝能量174奈焦耳之中約有65%的能量集中於主脈衝中,相較於非保偏摻鐿光纖啁啾放大系統,能量集中率提升了35%。
In the thesis, we studied the chirped pulse amplification (CPA) system based on a dual-stage Yb-doped polarization-maintaining (PM) fibers seeded with a picosecond-scale all-normal dispersion (ANDi) fiber laser with pulse duration of 15 ps and average output power of 50 mW. The dual-stage amplifier was composed of 7-m-long 10-μm Yb-doped PM fiber and 5-m-long 30-μm Yb-doped PM fiber as a pre-amplifier and a main amplifier, respectively. In the experiment, due to strong nonlinearities induced by PM fibers and third order dispersion (TOD) of the fiber stretcher, we could not obtain sub-picosecond pulses in CPA system. But the power efficiency was raised up to about 50% for the characteristic of PM fibers in maintaining polarization of pulses so that the power would not loss due to the selection of polarization in grating compressor. Under the condition of the best compensation in SOD and TOD, the highest peak power of the compressed pulse was ~90 kW with pulse duration of 1.7 ps in FWHM and 1.94 ps in EA definition and the pulse energy was 174 nJ with 65% pulse energy concentration which was improved up to 35% comparing to normal-fiber-based CPA system.
摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figures VII
List of Table XII
List of Abbreviations XIII
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1 Ultrafast Mode-Locked Laser 5
2.1.1 Mode-locking theory 5
2.1.2 Active mode-locking 7
2.1.3 Passive mode-locking 9
2.1.4 Mode-locking by nonlinear polarization evolution (NPE) 9
2.2 Optical Fiber Amplifier 11
2.2.1 Ytterbium (Yb) doped active fiber 11
2.2.2 Polarization maintaining fiber 13
2.2.3 Pumping wavelength of laser diode 15
2.2.4 Amplified spontaneous emission (ASE) 16
2.2.5 Stimulated Raman scattering (SRS) 16
2.2.6 Self-phase modulation (SPM) 18
2.3 Fundamentals of Chirped Pulse Amplification 20
2.3.1 Pulse propagation in a dispersive medium 21
2.3.2 Dispersion manipulation for generation of ultrafast pulses 22
2.3.3 Grating pair compressor 24
2.3.4 Grating stretcher 27
2.4 Theoretical and Numerical Analysis in Dispersive Media 28
2.4.1 Nonlinear Schrödinger equation 29
2.4.2 Split-Step fast Fourier transform 31
2.4.3 Frequency-Resolved Optical Gating (FROG) 32
2.5 Analytical Methods for Compressed Pulses 35
2.5.1 Pulse duration-effective area 35
2.5.2 Compressed pulse quality 37
Chapter 3 Experimental Methods 39
3.1 Master Oscillator Fiber Amplifier 39
3.2 All-Normal Dispersion (ANDi) Fiber Laser 40
3.3 Experimental Setup 45
3.3.1 PM fiber-based amplifier stage 45
3.3.2 1st stage PM fiber amplifier 46
3.3.3 Dual-stage PM fiber amplifier 51
3.3.4 PM fiber stretcher 56
3.3.5 Grating pair compressor 62
Chapter 4 Results and Discussions 65
4.1 Pulse Compression Results 65
4.1.1 Pulse compression with single-stage PM fiber amplifier 65
4.1.2 Pulse compression with dual-stage PM fiber amplifier 68
4.2 Chirped-Pulse Amplification (CPA) System 73
4.3 Comparisons 77
Chapter 5 Conclusions 82
Chapter 6 Future work 83
References 85

[1] A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, et al., "Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers," Optics Letters, vol. 34, pp. 3304-3306, 2009/11/01 2009.
[2] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics A, vol. 63, pp. 109-115, 1996/08/01 1996.
[3] G. P. Agrawal, Nonlinear fiber optics, 4 ed.: Academic Press, 2007.
[4] R. L. Farrow, D. A. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by self-focusing," Optics letters, vol. 31, pp. 3423-3425, 2006.
[5] M. Pessot, P. Maine, and G. Mourou, "1000 times expansion/compression of optical pulses for chirped pulse amplification," Optics Communications, vol. 62, pp. 419-421, 6/15/ 1987.
[6] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, "Generation of ultrahigh peak power pulses by chirped pulse amplification," Quantum Electronics, IEEE Journal of, vol. 24, pp. 398-403, 1988.
[7] C. J. Koester and E. Snitzer, "Amplification in a fiber laser," Applied Optics, vol. 3, pp. 1182-1186, 1964.
[8] Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power," in Advanced Solid-State Photonics, 2004, p. PDP13.
[9] J. Yoonchan, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, et al., "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 13, pp. 546-551, 2007.
[10] W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, et al., "Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses," Optics Letters, vol. 40, pp. 151-154, 2015/01/15 2015.
[11] R. Paschotta. (2007). Fiber Amplifiers: More ASE for Larger Core with Higher NA? Available: http://www.rp-photonics.com/spotlight_2007_08_06.html
[12] R. H. Stolen, J. Botineau, and A. Ashkin, "Intensity discrimination of optical pulses with birefringent fibers," Opt Lett, vol. 7, pp. 512-4, Oct 1 1982.
[13] X. Cao and D. Meyerhofer, "Nonlinear birefringence of optical fibers," Optics communications, vol. 109, pp. 151-154, 1994.
[14] J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, et al., "Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation," Light: Science & Applications, vol. 1, p. e8, 2012.
[15] H.-W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, et al., "Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor," Optics Express, vol. 18, pp. 24699-24705, 2010/11/22 2010.
[16] T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, "Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier," Optics express, vol. 19, pp. 7398-7409, 2011.
[17] P. S. J. Russell, "Photonic-crystal fibers," Journal of lightwave technology, vol. 24, pp. 4729-4749, 2006.
[18] W. E. Lamb, Jr., "Theory of an Optical Maser," Physical Review, vol. 134, pp. A1429-A1450, 06/15/ 1964.
[19] L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of He-Ne laser modes induced by synchronous intracavity modulation," Applied Physics Letters, vol. 5, p. 4, 1964.
[20] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics Letters, vol. 28, pp. 1391-1393, 1992.
[21] A. Govind P, Application of Nonlinear Fiber Opitcs, 2nd ed.: Academic Press, 2008.
[22] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, p. 576, 2002.
[23] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, Jul 1997.
[24] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," Quantum Electronics, IEEE Journal of, vol. 35, pp. 101-109, 1999.
[25] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, Jan-Jun 1928.
[26] B. E. Saleh and M. C. Teich, Fundamentals of photonics vol. 22, 1991.
[27] R. H. Stolen, A. R. Tynes, and E. P. Ippen, "Raman Oscillation in Glass Optical Waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972.
[28] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, pp. 699-701, May 1 1993.
[29] D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, "Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity," Opt. Express, vol. 17, pp. 18774-18781, 10/12 2009.
[30] D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Communications, vol. 56, pp. 219-221, 1985/12/01 1985.
[31] E. Treacy, "Optical pulse compression with diffraction gratings," Quantum Electronics, IEEE Journal of, vol. 5, pp. 454-458, 1969.
[32] A. Johnson, R. Stolen, and W. Simpson, "80× single‐stage compression of frequency doubled Nd: yttrium aluminum garnet laser pulses," Applied Physics Letters, vol. 44, pp. 729-731, 1984.
[33] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, p. 213902, 05/27/ 2004.
[34] R. Trebino. (2016). Light-Pulse-Measurement Tutorial. Available: http://frog.gatech.edu/tutorial.html
[35] K.-T. Chan and W.-H. Cao, "Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering," Optics communications, vol. 184, pp. 463-474, 2000.
[36] A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," Journal of the Optical Society of America B, vol. 25, pp. 140-148, 2008/02/01 2008.
[37] A. Weiner, Ultrafast optics vol. 72: John Wiley & Sons, 2011.
[38] J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, "Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy," Applied Optics, vol. 24, pp. 1270-1282, 1985.
[39] R. Trebino, "Code for Retrieving a Pulse Intensity and Phase from Its FROG Trace," 2016.
[40] Y.-J. You, "Fiber-laser-generated noise-like pulses and their applications to supercontinuum generation and optical coherence tomography," Degree of Doctor of Philosophy, Institute of Photonics Technologies College of Electrical Engineering and Computer Science, National Tsing Hua University, 2016.
[41] A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Passive harmonic modelocking of a fibre soliton ring laser," Electronics Letters, vol. 29, pp. 1860-1861, 1993.
[42] T. R. Sales and G. M. Morris, "Fundamental limits of optical superresolution," Optics letters, vol. 22, pp. 582-584, 1997.
[43] P. K. Mukhopadhyay, P. K. Gupta, K. S. Bindra, and S. M. Oak, "Note: Amplification characteristics of all-normal-dispersion mode-locked Yb-doped fiber laser: Influence of input pulse shape," Review of Scientific Instruments, vol. 84, pp. -, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top