( 您好!臺灣時間:2021/03/03 17:28
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chen, Yin Yu
論文名稱(外文):Photoluminescent Characteristics of Si Nano-Particles Fabricated From Si+/C+ Ions Implanted In SiO2 Films
指導教授(外文):Liang, Jenq HorngChao, Der Sheng
外文關鍵詞:ion implantationphotoluminesencenano particlesiliconcarbon
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著奈米顆粒在矽基奈米結構材料的強發光現象被發現後,此類材料在光電應用領域上備受矚目。其中,以離子束合成法在二氧化矽薄膜中合成矽奈米顆粒最為普遍,乃因採取離子束合成法來控制實驗條件較為容易,且與半導體製程相容性甚佳。而接續發展的離子共佈植法,即依序佈植矽、碳離子,不只改變基材內部結構,還激發出多光源組合成的白光,為未來的光電材料開發更多應用價值。然而,有關矽、碳離子佈植二氧化矽材料的光致發光(photoluminescence,以下簡稱 PL)機制仍有待釐清,因此,本論文目標為全盤地研究矽、碳離子佈植二氧化矽薄膜經由不同的離子佈植與後續熱處理程序後,其微結構與 PL 的性質變化;另外,也比較不同佈植方式的發光性質差異。本研究以熱成長法成長於矽基板上之二氧化矽作為基質材料,矽與碳離子在室溫下以單獨或共佈植的方式植入二氧化矽薄膜之中,後續分析是以螢光光譜量測矽、碳及矽、碳共佈植二氧化矽薄膜之 PL 性質,結果顯示矽離子佈植二氧化矽薄膜之 PL 光譜出現三種不同峰值,分別為 310 nm、450 nm 及 650 nm,三者之發光來源均屬於材料內部缺陷,其中前兩者稱為氧空乏中心,後者則為未橋接氧空洞中心。與矽佈植不同的是,碳與矽-碳共佈植卻分別觀察到由 410 nm 的藍光、520 nm 的綠光及 720 nm 的紅光等發光波段,即三原色組合成的白光光源,而這三道光源係分別來自於矽-碳鍵結、碳-碳類石墨結構及矽奈米晶粒所貢獻,且其峰值強度皆隨退火溫度改變而有明顯地變化,因此可以推論矽、碳離子佈植二氧化矽材料內部受熱處理時,可能引發不同的熱效應,包括:(一)缺陷修復、(二)佈植離子鍵結以及(三)奈米晶粒的生成,導致 PL 性質的改變。此外,本研究也更進一步地使用精密儀器來分析材料的顯微結構、化學鍵結與元素分佈。
In recent years, the potential applications of Si-based nanostructured materials in the areas of optoelectronic devices have gained much attention especially since the discovery of strong luminescence from semiconductor nanoparticle-containing materials. Ion beam synthesis has been considered as one of the most promising methods to form nanoparticles due to its great processing compatibility with current semiconductor manufacturing technology as well as its excellent controllability in implantation process parameters. The method of sequential implantation of Si+ and С+ ions into SiO2 not only changes the structure of internal matrix but also excites white light emission coupling from multiple luminescent centers. Furthermore, this method creates a glorious prospect for the applications of Si-based optoelectronic materials. However, the mechanisms of photoluminescence (PL) originating from Si+/C+-implanted SiO2 are still unclear and need to be clarified. Thus, this study aims to thoroughly investigate the effects of different parameters of ion implantation and post-annealing on microstructures and PL characteristics in the Si+/C+ implanted SiO2 films. A comparative analysis was also conducted to clarify the difference of optical properties between the Si+ and Si+/C+ implanted SiO2 films. In this study, thermally-grown SiO2 films on Si substrates were used as the matrix materials. The Si+ ions and C+ ions were separately implanted into the SiO2 films at room temperature. The PL characteristics of the Si+/C+ implanted SiO2 films were analyzed using a fluorescence spectrophotometer.
The results revealed that the distinct PL peaks were observed at approximately 310, 450 and 650 nm in the Si+ implanted SiO2 films, which can be attributed to the defects, so called oxygen deficiency centers (ODCs) and Non-Bridging Oxygen Hole Center (NBOHC), in the Si+ implanted SiO2 materials. In contrast to the Si+ ion implantation, the SiO2 films which were sequentially implanted with Si+ and C+ ions and annealed at 1100°C can emit white light corresponding to the PL peaks located at around 410, 520 and 720 nm, those can be assigned to the Si-C bonding, C-C graphite-like structure (sp2), and Si nanocrystals, respectively. Moreover, the intensity of PL peaks varied with post-annealing temperature, which implied that thermal annealing treatment could induce (1) defect recovery, (2) bonding of implanted ions with matrix atoms and (3) nanocrystal formation which would influence the PL luminescence properties. Moreover, this study attempted to establish a correlation among optical properties, microstructures, and bonding configurations of the Si+/C+ implanted SiO2 films using some sophisticated experimental equipment.

摘要 i
Abstract ii
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 4
2.1 矽基奈米材料的發展歷史 4
2.2 奈米顆粒製備法 6
2.2.1 離子束合成法 6
2.2.2 射頻-磁控濺射 8
2.2.3 試樣的元素分佈及品質 9
2.3 離子佈植二氧化矽材料的發光特性 11
2.4 離子佈植二氧化矽材料的發光機制 13
2.4.1 量子侷限效應(Quantum Confinement Effect) 14
2.4.2 奈米結構材料的缺陷 16
2.4.3 碳離子佈植的鍵結行為 19
2.5 退火熱處理的影響 20
第三章 實驗原理與方法 24
3.1 SRIM 電腦模擬計算程式 24
3.2 基質材料製備 26
3.3 退火熱處理 28
3.4 特性分析 29
3.4.1 螢光光譜儀分析 29
3.4.1 X射線光電子能譜儀 35
3.4.2 二次離子質譜儀 38
3.4.3 拉曼光譜儀 42
3.4.4 穿透式電子顯微鏡 46
第四章 結果與討論 49
4.1 SRIM 蒙地卡羅電腦模擬程式 50
4.2 矽離子佈植二氧化矽 54
4.3 碳離子佈植二氧化矽 58
4.4 低劑量矽-碳離子共佈植二氧化矽 62
4.5 高劑量矽-碳離子共佈植二氧化矽 66
4.6 綜合討論 69
4.6.1 碳相關結構 69
4.6.2 退火時間對PL的影響 71
4.6.3 不同佈植試片對矽奈米晶粒成核之差異 74
4.6.4 實驗參數改變對材料發光性質的影響 76
第五章 結論與未來工作 79
5.1. 結論 79
5.2. 未來建議 81
參考文獻 82

[1] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046 (1990).
[2] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440 (2000).
[3] M. A. Green, J. H. Zhao, A. H. Wang, P. J. Reece, M. Gal, “Efficient silicon light-emitting diodes,” Nature 412, 805 (2001).
[4] J. G. Zhu, C.W. White, J. D. Budai, S. P. Withrow, Y. Chen, “Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices,” J. Appl. Phys. 78, 4386 (1995).
[5] K. S. Min, K. V. Shcheglov, C. M. Yang, Harry A. Atwater, M. L. Brongersma, A. Polman, “Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1996).
[6] R. J. Walters, P. G. Kik, J. D. Casperson, H. A. Atwater, R. Lindstedt, M. Giorgi, G. Bourianoff, “Silicon optical nanocrystal memory,” Appl. Phys. Lett. 85(13), 2622 (2004).
[7] J. Valenta, N. Lalic, J. Linnros, “Electroluminescence of single silicon nanocrystals,” Appl. Phys. Lett. 84, 1459 (2004).
[8] R. Salh, L. Kourkoutis, M. V. Zamoryanskaya, B. Schmidt, H. J. Fitting, “Ion implantation, luminescence, and cluster growth in silica layers,” J. Non-Cryst. Solids. 355, 1107 (2009).
[9] R. Salh, L. F. Kourkoutis, M. V. Zamoryanskaya, B. Schmidt, H. J. Fitting, “Ion implantation and cluster formation in silica,” Superlattices Microstruct. 45, 362 (2009).
[10] R. Salh, L. F. Kourkoutis, B. Schmidt, H. J. Fitting, “Luminescence of isoelectronically ion-implanted SiO2 layers,” Phys. Status Solidi. 204, 3132 (2007).
[11] O. Jambois, J. Carreras, A. Pérez-Rodríguez, B. Garrido, C. Bonafos, S. Schamm, G. B. Assayag, “Field effect white and tunable electroluminescence from ion beam synthesized Si- and C-rich SiO2 layers,” Appl. Phys. Lett. 91(21), 211105 (2007).
[12] H. S. Bae, T. G. Kim, C. N. Whang, S. Im, J. S. Yun, J. H. Song, “Electroluminescence mechanism in SiOx layers containing radiative centers,” J. Appl. Phys. 91, 4078 (2002).
[13] K. Ma, J. Y. Feng, Z. J. Zhang, ”Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering,” Nanotechnology 17, 4650 (2006).
[14] F. Iacona, G. Franzo, C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, 1295 (2000).
[15] Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang, X. B. Liao, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix,” Appl. Phys. Lett. 81, 4174 (2002).
[16] A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernandez, G. Contreras-Puente, J. C. Alonso, “Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3,” Nanotechnology 18, 155704 (2007).
[17] L. Y. Chen, W. H. Chen, F. C. N. Hong, “Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix,” Appl. Phys. Lett. 86, 193506 (2005).
[18] O. Jambois, B. Garrido, P. Pellegrino, J. Carreras, A. Pérez-Rodríguez, J. Montserrat, C. Bonafos, G. BenAssayag, S. Schamm, “White electroluminescence from C-and Si-rich thin silicon oxides,” Appl. Phys. Lett. 89, 253124 (2006).
[19] L. Rebohle1, J. V. Borany, H. Fröb, W. Skorupa, “Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements,” Appl. Phys. B 71, 131 (2000).
[20] J. M. J. Lopes, F. C. Zawislak, P. F. P. Fichtner, F. C. Lovey, A. M. Condó, “Effect of annealing atmosphere on the structure and luminescence of Sn-implanted SiO2 layers,” Appl. Phys. Lett. 86, 023101 (2005).
[21] A. Markwitz, R. Grötzschel, K. H. Heinig, L. Rebohle, W. Skorupa, “Microstructural investigation of Sn nanoclusters in double-energy implanted and annealed SiO2 layers with cross-sectional TEM,” Nucl. Instrum. Methods Phys. Res., Sect. B 152, 319 (1999).
[22] Y. Ramjauny, G. Rizza, S. Perruchas, T. Gacoin, R. Botha, “Controlling the size distribution of embedded Au nanoparticles using ion irradiation,” J. Appl. Phys. 107, 104303 (2010).
[23] W. M. Tsang, V. Stolojan, B. J. Sealy, S. P. Wong, S. R. P. Silva, “Electron field emission properties of Co quantum dots in SiO2 matrix synthesised by ion implantation,” Ultramicroscopy 107, 819 (2007).
[24] P. Kumar, R. Kumar, D. Kanjilal, M. Knobel, P. Thakur, K. H. Chae, “Ion beam synthesis of Ni nanoparticles embedded in quartz,” J. Vac. Sci. Technol. B 26, 36 (2008).
[25] X. D. Zhou, F. Ren, X. H. Xiao, J. X. Xu, Z. G. Dai , G. X. Cai, C. Z. Jiang, “Origin of white light luminescence from Si+/C+ sequentially implanted and annealed silica,” J. Appl. Phys. 111, 084304 (2012).
[26] D. I. Tetelbaum, A. N. Mikhaylov, V. K. Vasiliev, A. I. Belov, A. I. Kovalev, D. L. Wainstein, Yu. A. Mendeleva, T. G. Finstad, S. Foss, Y. Golan, A. Osherov. “Effect of carbon implantation on visible luminescence and composition of Si-implanted SiO2 layers,” Surf. Coat. Technol. 203, 2658 (2009).
[27] O. González-Varona, A. Pèrez-Rodrìguez, B. Garrido, C. Bonafos, M. Lopez, J. R. Morante, J. Montserrat, R. Rodrguez, “Ion beam synthesis of semiconductor nanoparticles for Si based optoelectronic devices,” Nucl. Instrum. Methods Phys. Res., Sect. B 161, 904 (2000).
[28] A. Pèrez-Rodrìguez, O. González-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, “White luminescence from Si and C ion-implanted SiO2 films,” J. Appl. Phys. 94, 254 (2003).
[29] Sailor Research Group, Introduction to Porous Si, Sailor research group at UCSD, Department of Chemistry, University of California.17 February (2003).
[30] B. G. Fermandez, M. López, C. Garcia, A. Pérez-Rodriguez, J. R. Marante, C. Bonafos, M. Carrada, A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2,” J. Appl. Phys. 91, 798 (2002).
[31] A. R. Wilkinson, R. G. Elliman, “The effect of annealing environment on the luminescence of silicon nanocrystals in silica,” J. Appl. Phys. 96, 4018 (2004).
[32] A. A. González-Fernándeza, J. Juverta, M. Aceves-Mijaresb, A. Lloberaa, C. Domíngueza, “Influence of silicon binding energy on photoluminescence of Si-implanted silicon dioxide,” ECS Transactions 49, 307 (2012).
[33] T. S. Iwayama, “Si nanocrystals formation in SiO2 by ion implantation: The effects of RTA and UV irradiation on photoluminescence,” Vacuum 86, 1634 (2012).
[34] X. D. Zhou, F. Ren, X. H. Xiao, G. X. Cai, C. Z. Jiang, “Influence of annealing temperatures and time on the photoluminescence properties of Si nanocrystals embedded in SiO2,” Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3437 (2009).
[35] R. Salh, Defect related luminescence in silicon dioxide network: a review, in Crystalline Silicon-Properties and Uses, InTech, (2011).
[36] K. S. Seol, Y. Ohki, H. Nishikawa, M. Takiyama, Y. Hama, “Effect of implanted ion species on the decay kinetics of 2.7 eV photoluminescence in thermal SiO2 films,” J. Appl. Phys. 80, 6444 (1996).
[37] P. K. Giri, S. Dhara, “Freestanding Ge/GeO2 core-shell nanocrystals with varying sizes and shell thicknesses: microstructure and photoluminescence studies,” J Nanomater. 2012, 1 (2012).
[38] R. S. Wu, X. F. Luo, C. L. Yuan, Z. R. Zhang, J. B. Yu, “Preparation and photoluminescence properties of Ge nanocrystals embedded in SiO2 matrices with Ge–GeOx core–shell structure,” Physica E 41, 1403 (2009).
[39] M. A. Tagliente, V. Bello, G. Pellegrini, G. Mattei, P. Mazzoldi, M. Massaro, “SnO2 nanoparticles embedded in silica by ion implantation followed by thermal oxidation,” J. Appl. Phys. 106, 104304 (2009).
[40] P. Pellegrino, A. Pérez-Rodriguez, B. Garrido, O. González-Varona, J. R. Morante, S. Marcinkevičius, A. Galeckas, J. Linnros, “Time-resolved analysis of the white photoluminescence from SiO2 films after Si and C coimplantation,” Appl. Phys. Lett. 84, 25 (2004).
[41] L. Torrison, J. Tolle, D. J. Smith, C. Poweleit, J. Menendez, M. M. Mitan, T. L. Alford, J. Kouvetakis, “Morphological and optical properties of Si nanostructures imbedded in SiO2 and Si3N4 films grown by single source chemical vapor deposition,” J. Appl. Phys. 92, 7475 (2002).
[42] V. A. Gritsenko, V. A. Nadolinny, K. S. Zhuravlev, J. B. Xu, H. Wong, “Quantum confinement and electron spin resonance characteristics in Si-implanted silicon oxide films.” J. Appl. Phys. 109, 084502 (2011).
[43] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, A. Polman, “The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals,” Appl. Phys. Lett. 68, 2511 (1996).
[44] R. Abbaschian, 物理冶金 / R .Abbaschian, L. Abbaschian, E. Robert, Reed-Hill原著; 劉偉隆等編譯,臺北市:新加坡商聖智學習 (2010).
[45] L. Rebohle, J.V. Borany, W. Skorupa, K.H. Heinig, “Blue light emission from ion beam synthesized semiconductor nanoclusters in SiO2 films,” IEEE Conference Proceeding 1, 62 (1999).
[46] A. N. Trukhin, “Radiation processes in oxygen-deficient silica glasses: is ODC(I) a precursor of E′-center?,” J. Non-Cryst. Solids 352, 3002 (2006).
[47] D. Wainstein, A. Kovalev, D. Tetelbaum, A. Mikhaylova, A. Belovb, “Investigations of SiC semiconductor nanoinclusions formed by sequential ion implantation and annealing in thermally oxidized Si,” Surf. Interface Anal. 40, 571 (2008).
[48] L. Rebohle, T. Gebel, H. Fröb, H. Reuther, W. Skorupa, “Ion beam processing for Si/C-rich thermally grown SiO2 layers: photoluminescence and microstructure,” Appl. Surf. Sci. 184, 156 (2001).
[49] O. H. Krafcsik, G. Vida, I. Pócsik, K. V. Josepovits, P Deák, “Carbon diffusion through SiO2 from a hydrogenated amorphous carbon layer and accumulation at the SiO2/Si interface,” Jpn. J. Appl. Phys. 40, 2197 (2001).
[50] J. F. Ziegler, J. P. Biersack, U. Littmask, Stopping and Range of Ions in Solids, 1, Pergamon Press, (1985).
[51] 錢其琛,「氫分子離子佈植於不同晶向之鍺靶材內部所引起表面發泡與發泡破裂行為研究」,國立清華大學,碩士論文 (2014).
[52] A. Jabloński, “Efficiency of anti-Stokes fluorescence in dyes,” Nat. 131, 839 (1933).
[53] 余青峰,「離子束合成鍺奈米粒子及其光致發光特性研究」,國立清華大學,碩士論文 (2013).
[54] D. Halliday, R. Resnick, J. Walker, Fundamental of Physics 7th, USA: John Wiley and Sons, Inc., (2005).
[55] P. Aruna, A. A. Begum, X-ray photoelectron spectroscopy: a review, International Journal of Universal Pharmacy and Bio Sciences, (2014).
[56] Handbook of The Elements and Native Oxides, XPS International, Inc. (1999).
[57] A. Benninghoven, F. G. Rudenauer, H. W. Werner, Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends, John Wiley & Sons, 950 (1987).
[58] 蕭宇成,「氫分子離子佈植技術於製作不同晶向的絕緣體上矽材料之比較研究」,國立清華大學,碩士論文 (2011).
[59] P. W. Zitzewitz, Physics: Principles and Problems, McGraw-Hill Education, (1999).
[60] Z. C. Feng, P. A. Barnes, S. Perkowitz, “Raman-scattering of ingaas/inp grown by uniform radial flow epitaxy,” Appl. Phys. 06, 1848 (1992).
[61] K. J. Yano, “Raman-spectra and electric-resistance of thermally treated in/gaas structures,” Appl. Phys. 70, 7036 (1991).
[62] 蘇青森,儀器學,五南圖書出版股份有限公司 (2002).
[63] G. E. Jellison, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758 (1994).
[64] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書三,國家科學委員會精密儀器發展中心 (1994).
[65] T. S. Iwayama, T. Hama, D. E. Hole, I. W. Boyd, “Optical and structural properties of encapsulated Si nanocrystals formed in SiO2 by ion implantation,” Surf. Coat. Technol. 712, 158 (2002).
[66] D. R. Gaskell, Introduction to the thermodynamics of materials, Taylor & Francis, Inc, (2008).
[67] H. Ryssel, I. Ruge, Ion implantation, John Wiley & Sons, Chichester, (1986).

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔