跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳煥杰
研究生(外文):Chen, Huan Chieh
論文名稱:長氣泡於封閉圓管中的熱毛細遷移速率量測與探討
論文名稱(外文):An Experimental Study of Thermocapillary Migration of Long Bubbles in Closed Cylinder Tubes
指導教授:黃智永
指導教授(外文):Huang, Chih Yung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:熱毛細長氣泡遷移圓管
外文關鍵詞:thermocapillarylong bubblesmigrationcylinder tubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要實驗的方式探討長氣泡於封閉圓管中的熱毛細遷移情形,實驗過程中將改變氣泡長度、溫度梯度、管徑大小及親疏水表面性質探討其對遷移速率的影響。在進行速率量測實驗前須先建立起良好的控溫條件,本研究利用簡單的實驗架設建立起線性的溫度場,其溫度梯度的可調範圍為0~4℃/cm,並以熱電偶搭配TSP螢光溫度感測技術進行管內全域及局部的液體溫度量測,結果顯示熱電偶與TSP螢光溫度感測技術量測的結果有很好的一致性,差異皆在5%以內。
本研究使用的管材為親水性表面的玻璃管,利用蒸鍍介面活性劑於玻璃內壁的方式製作疏水性管材,工作流體的選擇為去離子水及乙醇,選用乙醇的原因為乙醇不論在親疏水性表面皆能完全濕潤。遷移速率的量測結果顯示,不同氣泡長度對遷移速率的影響與前人文獻有相同的趨勢。氣泡的遷移速率會與溫度梯度及管徑大小呈一次方關係,推估是受到蒸發凝結及垂直熱毛細力的影響,使管內上壁面的薄膜厚度較厚進而產生平板流的效應。本研究也成功量測出氣泡於疏水性表面圓管中遷移速率,並將結果與親水性表面結果比較,發現滑移邊界對遷移速率在低溫度梯度時有較好的效果約46%的增益。

This study aims to investigate the thermocapillary migration of long bubbles in closed cylinder tubes. Different experimental conditions like bubble length, temperature gradient, tube radius and surface property were changed to find the influence on the migration velocity. Linear temperature field was established by using current experimental setup. The temperature gradient in current experiment can be adjusted ranging from 0 to 4℃/cm. The molecule based temperature sensor technique has also been applied to the experiments for fluid temperature measurements inside cylinder tubes. The temperature data acquired by molecule based temperature sensor show good agreement with the one measured by thermocouples and the deviation between them is within 5 %.
The glass cylinder tubes with hydrophilic surface have also been prepared by evaporating silane inside the cylinder surface. Deionized water and Ethanol which can form wetted surface inside cylinder tubes regardless the surface properties were chosen as the working fluid. It is found that the migration velocity linearly increases with the temperature gradient and the tube radius which differ from previous studies. They are due to the effect of evaporation/condensation and the vertical thermocapillary force observed in current experiments. These effects make the film thicker at the top of cylinder which causes fluid passing similar to parallel plate flow. Previous studies reported that the migration velocity has a linear dependence on modified capillary number if parallel plate flow dominates the flow field around the bubble. The results also show that bubble moving speed in hydrophobic cylinder tubes at low temperature gradients has 46 percent faster compared to the hydrophilic cylinder tubes.

摘要 I
ABSTRACT II
目錄 IV
圖目錄 VII
表目錄 XI
第一章、 序論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 氣泡於管內運動情形回顧 2
1.2.2 熱毛細致動液滴回顧 4
1.2.3 熱毛細致動氣泡回顧 7
1.2.4 TSP螢光溫度感測塗料回顧 16
1.2.5 動態接觸角量測回顧 18
1.3 研究目的 21
1.4 論文架構 21
第二章、 實驗原理 23
2.1 熱毛細氣泡遷移原理 23
2.2 表面張力 23
2.3 熱毛細氣泡理論遷移速率推導 25
2.4 TSP螢光溫度感測塗料原理 28
第三章、 實驗方法 31
3.1 線性溫度場建立 31
3.2 TSP線性溫度場檢測 35
3.2.1 螢光溫度感測溶液調配 36
3.2.2 管內溫度場量測實驗架設 37
3.2.3 管內溫度場TSP校正曲線及公式 39
3.3 熱毛細氣泡遷移速率量測 46
3.3.1 管材及工作流體選擇 46
3.3.2 待測管製作 49
3.3.3 遷移速率實驗架設 50
3.4 不確定性分析 52
第四章、 管內液體溫度場及接觸角量測結果 55
4.1 TSP影像處理 55
4.2 管內全域溫度量測結果 58
4.3 管內局部溫度量測結果 62
4.4 動態接觸角量測結果 64
第五章、 氣泡遷移速率量測結果 66
5.1 圓管兩端預留氣段測試與相關無因次化參數計算 66
5.2 不同氣泡長度對遷移速率的影響 68
5.3 圓管內壁表面處理對遷移速率的影響 72
5.4 溫度梯度對遷移速率的影響 74
5.5 管徑大小對遷移速率的影響 81
5.6 親疏水性表面對遷移速率的影響 83
第六章、 結論與未來工作建議 86
6.1 結論 86
6.2 未來工作建議 88
參考文獻 90

[1] E. Lauga, M. Brenner, and H. Stone, "Microfluidics: the no-slip boundary condition," Springer handbook of experimental fluid mechanics, pp. 1219-1240, 2007.
[2] F. Fairbrother and A. E. Stubbs, "119. Studies in electro-endosmosis. Part VI. The “bubble-tube” method of measurement," Journal of the Chemical Society (Resumed), pp. 527-529, 1935.
[3] F. Bretherton, "The motion of long bubbles in tubes," Journal of Fluid Mechanics, vol. 10, pp. 166-188, 1961.
[4] M. D. Giavedoni and F. A. Saita, "The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube," Physics of Fluids (1994-present), vol. 11, pp. 786-794, 1999.
[5] T. Taha and Z. Cui, "CFD modelling of slug flow inside square capillaries," Chemical Engineering Science, vol. 61, pp. 665-675, 2006.
[6] J. Brzoska, F. Brochard-Wyart, and F. Rondelez, "Motions of droplets on hydrophobic model surfaces induced by thermal gradients," Langmuir, vol. 9, pp. 2220-2224, 1993.
[7] K. D. Barton and R. Shankar Subramanian, "The migration of liquid drops in a vertical temperature gradient," Journal of colloid and interface science, vol. 133, pp. 211-222, 1989.
[8] F. Brochard, "Motions of droplets on solid surfaces induced by chemical or thermal gradients," langmuir, vol. 5, pp. 432-438, 1989.
[9] S. Wilson, "The steady thermocapillary‐driven motion of a large droplet in a closed tube," Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 5, pp. 2064-2066, 1993.
[10] S. Wilson, "The effect of an axial temperature gradient on the steady motion of a large droplet in a tube," Journal of engineering mathematics, vol. 29, pp. 205-217, 1995.
[11] C. W. Park, "Influence of soluble surfactants on the motion of a finite bubble in a capillary tube," Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 4, pp. 2335-2347, 1992.
[12] V. Pratap, N. Moumen, and R. S. Subramanian, "Thermocapillary motion of a liquid drop on a horizontal solid surface," Langmuir, vol. 24, pp. 5185-5193, 2008.
[13] N.-T. Nguyen and X. Huang, "Thermocapillary effect of a liquid plug in transient temperature fields," Japanese journal of applied physics, vol. 44, p. 1139, 2005.
[14] H.-Y. Kim, "On thermocapillary propulsion of microliquid slug," Nanoscale and Microscale Thermophysical Engineering, vol. 11, pp. 351-362, 2007.
[15] A. A. Darhuber, J. P. Valentino, S. M. Troian, and S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays," Microelectromechanical Systems, Journal of, vol. 12, pp. 873-879, 2003.
[16] Z. Jiao, X. Huang, N.-T. Nguyen, and P. Abgrall, "Thermocapillary actuation of droplet in a planar microchannel," Microfluidics and Nanofluidics, vol. 5, pp. 205-214, 2008.
[17] C. N. Baroud, J.-P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Physical Review E, vol. 75, p. 046302, 2007.
[18] B. Selva, V. Miralles, I. Cantat, and M.-C. Jullien, "Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping," Lab on a Chip, vol. 10, pp. 1835-1840, 2010.
[19] N. Young, J. Goldstein, and M. Block, "The motion of bubbles in a vertical temperature gradient," Journal of Fluid Mechanics, vol. 6, pp. 350-356, 1959.
[20] M. Hasan and R. Balasubramaniam, "Thermocapillary migration of a large gas slug in a tube," Journal of Thermophysics and Heat Transfer, vol. 3, pp. 87-89, 1989.
[21] A. Mazouchi and G. M. Homsy, "Thermocapillary migration of long bubbles in cylindrical capillary tubes," Physics of Fluids, vol. 12, pp. 542-549, Mar 2000.
[22] A. Mazouchi and G. Homsy, "Thermocapillary migration of long bubbles in polygonal tubes. I. Theory," Physics of Fluids (1994-present), vol. 13, pp. 1594-1600, 2001.
[23] V. S. Ajaev and G. Homsy, "Steady vapor bubbles in rectangular microchannels," Journal of colloid and interface science, vol. 240, pp. 259-271, 2001.
[24] R. Marek and J. Straub, "The origin of thermocapillary convection in subcooled nucleate pool boiling," International Journal of Heat and Mass Transfer, vol. 44, pp. 619-632, 2001.
[25] E. Lajeunesse and G. Homsy, "Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments," Physics of Fluids (1994-present), vol. 15, pp. 308-314, 2003.
[26] V. S. Ajaev and G. Homsy, "Modeling shapes and dynamics of confined bubbles," Annu. Rev. Fluid Mech., vol. 38, pp. 277-307, 2006.
[27] H. A. Stone, "Interfaces: in fluid mechanics and across disciplines," Journal of Fluid Mechanics, vol. 645, pp. 1-25, 2010.
[28] C. Duan, R. Karnik, M.-C. Lu, and A. Majumdar, "Evaporation-induced cavitation in nanofluidic channels," Proceedings of the National Academy of Sciences, vol. 109, pp. 3688-3693, 2012.
[29] Y.-C. Liao, Y.-C. Li, Y.-C. Chang, C.-Y. Huang, and H.-H. Wei, "Speeding up thermocapillary migration of a confined bubble by wall slip," Journal of Fluid Mechanics, vol. 746, pp. 31-52, 2014.
[30] R. Savino, A. Cecere, and R. Di Paola, "Surface tension-driven flow in wickless heat pipes with self-rewetting fluids," International Journal of Heat and Fluid Flow, vol. 30, pp. 380-388, 2009.
[31] J. Crafton, N. Lachendro, M. Guille, J. P. Sullivan, and J. D. Jordan, "Application of temperature and pressure sensitive paint to an obliquely impinging jet," AIAA Paper, pp. 99-0387, 1999.
[32] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
[33] C. Huang, J. W. Gregory, H. Nagai, K. Asai, and J. P. Sullivan, "Molecular sensors in microturbine measurement," in ASME 2006 International Mechanical Engineering Congress and Exposition, 2006, pp. 577-583.
[34] J. J. Lee, J. C. Dutton, and A. M. Jacobi, "Application of temperature-sensitive paint for surface temperature measurement in heat transfer enhancement applications," Journal of mechanical science and technology, vol. 21, pp. 1253-1262, 2007.
[35] R. Samy, T. Glawdel, and C. L. Ren, "Method for microfluidic whole-chip temperature measurement using thin-film poly (dimethylsiloxane)/Rhodamine B," Analytical chemistry, vol. 80, pp. 369-375, 2008.
[36] C.-Y. Huang, C.-A. Li, H.-Y. Wang, and T.-M. Liou, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," Journal of Micromechanics and Microengineering, vol. 23, p. 037001, 2013.
[37] R. L. Hoffman, "A study of the advancing interface. I. Interface shape in liquid—gas systems," Journal of colloid and interface science, vol. 50, pp. 228-241, 1975.
[38] C. G. Ngan and E. B. Dussan V, "On the nature of the dynamic contact angle: an experimental study," Journal of Fluid Mechanics, vol. 118, pp. 27-40, 1982.
[39] J.-D. Chen, "Experiments on a spreading drop and its contact angle on a solid," Journal of colloid and interface science, vol. 122, pp. 60-72, 1988.
[40] C.-M. Wu, "The application of molecule-based temperature sensors for surface and fluid temperature measurement inside retangular microchannel under constant heat flux boundary condition," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[41] M. Stobiecka and M. Hepel, "Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles," Physical Chemistry Chemical Physics, vol. 13, pp. 1131-1139, 2011.
[42] C.-Y. Huang, C.-M. Lai, and J.-S. Li, "Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint," Microelectromechanical Systems, Journal of, vol. 21, pp. 1090-1097, 2012.
[43] R. Moffat, "Contributions to the theory of single-sample uncertainty analysis," ASME, Transactions, Journal of Fluids Engineering, vol. 104, pp. 250-58, 1982.
[44] R. J. Moffat, "Describing the uncertainties in experimental results," Experimental thermal and fluid science, vol. 1, pp. 3-17, 1988.
[45] C.-M. Wu, "The application of molecule-based temperature sensors for surface and surface and fluid temperature measurement inside rectangular microchannel and under constant heat flux boundary condition," Master, NTHU, PME, 2013.
[46] M. Hisoda, S. Nishio, and R. Shirakashi, "Study of Meandering Closed-Loop Heat-Transport Device. Vapor-Plug Propagation Phenomena," JSME International Journal Series B, vol. 42, pp. 737-744, 1999.
[47] K. Sefiane, L. Tadrist, and M. Douglas, "Experimental study of evaporating water–ethanol mixture sessile drop: influence of concentration," International journal of heat and mass transfer, vol. 46, pp. 4527-4534, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top