跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊維
研究生(外文):Huang. Jyun Wei
論文名稱:二維超聲振動輔助磨削藍寶石之研究
論文名稱(外文):A Study on Grinding Sapphire with Two-Dimensional Ultrasonic Assisted
指導教授:左培倫
指導教授(外文):Tso. Pei Lum
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:106
中文關鍵詞:超聲波輔助磨削表面輪廓切屑生成藍寶石
外文關鍵詞:Ultrasonic assisted grindingSurface formation mechanismChip formationSapphire
相關次數:
  • 被引用被引用:4
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
藍寶石具有高硬度、良好透光性、化學穩定性,被應用在LED、半導體、光學及通訊產業上。在工程上須先生成藍寶石晶棒,再以切、磨、拋完成所需之輪廓、尺寸及表面精度。只是藍寶石屬於硬脆材料,維氏硬度高達2200 Kg/mm2的特性使磨削加工非常困難。超聲輔助加工在許多研究中擁有提升材料移除量、降低切削力、切削溫度與工件表面粗糙度並且延長刀具壽命的特性。
本研究對二維超聲輔助磨削藍寶石的作用機制和磨削特性進行探討,使磨削過程從脆性轉變成延性移除,建立模型並輔以實驗來驗證。透過其磨削力與比磨削能了解材料移除機制、表面完整性與切屑形成機制。最後獲得二維超聲輔助磨削之加工條件與磨削成果之關係,提供超聲輔助磨削藍寶石時加工應用上的依據,對於使用藍寶石的相關產業有正向幫助。

Sapphire (single-crystal Al2O3) is highly used in LED, semiconductor, optical and communication industries, because of its high hardness, great optical transparency and chemical stability. In engineering applications, sapphire is always required to be thinning and high surface integrity. However, sapphire is very difficult to grind because of extraordinarily hard material property with Vickers hardness 2200 Kg/mm2.Two-dimension ultrasonic assisted grinding (2D-UAG) has been proved to be promising in machining of hard and brittle materials. However, its potential has not been sufficiently developed because the processing mechanism has not been clearly explained.
In this paper, the trajectory of abrasive in different amplitude of 2D-UAG are analyzed. It gives the relationship of amplitude and equivalent chip thickness. The grinding experiments under the existence/non-existence of 2D-UAG are performed. The grinding process transform from brittle to ductile mode. It’s estimated by experiments to verify that the grinding force, specific grinding energy, surface formation mechanism and chip formation of 2D-UAG.

目錄
目錄 I
圖目錄 IV
表目錄 VI
摘要 VII
Abstract VIII
致謝 IX
第1章 簡介 1
1.1 藍寶石 1
1.2 硬脆材料 3
1.3 硬脆材料的破壞 6
1.4 磨削加工 7
1.4.1 磨削幾何學 9
1.4.1.1幾何接觸弧長lg[3] 10
1.4.1.2動態接觸弧長lk[3] 10
1.4.1.3材料移除率Q與比材料移除率Q’ [3] 10
1.4.2 切屑厚度 11
1.4.2.1最大未切屑厚度hm [3][4] 11
1.4.2.2等效切屑厚度heq [3][4] 12
1.4.2.3無因次磨粒切深hg [3][4] 13
1.4.3 磨削力Ft、Fn 14
1.4.4 比磨削能 16
1.5 超聲振動輔助加工 18
1.5.1 原理 18
1.5.2 超聲波產生器 18
1.5.3 壓電效應 18
1.5.4 壓電基本公式[11][12] 19
1.5.5 機電耦合係數[11][12] 20
1.5.6 超聲波輔助加工的應用及優點 22
第2章 研究動機與目的 23
2.1 研究動機 23
2.2 研究目的 23
第3章 文獻回顧 25
3.1 硬脆材料磨削理論 25
3.1.1 脆性移除 25
3.1.2 延性移除 26
3.2 硬脆材料磨削加工 28
3.3 超聲輔助磨削 31
第4章 實驗規劃與設備 35
4.1 實驗規劃 35
4.2 實驗設備 36
4.2.1 建德KGS-250WM1型平面磨床 36
4.2.2 先寧公司STC-4SH5028壓電換能器 37
4.2.3 GW Instek GFG-8216A訊號產生器 38
4.2.4 儀器科技研究中心製功率放大器 39
4.2.5 KISTLER Type 9257B動力計 39
4.2.6 Mitutoyo SJ-301表面粗度測定機 40
4.2.7 Precisa XS1220M電子天秤 41
4.2.8 超聲振動平台 41
4.2.9 JEOL JSM-7000F掃描式電子顯微鏡 42
4.2.10 三次元表面輪廓量測儀(WYKO NT1100) 43
4.2.11 雷射都卜勒振動量測儀 44
4.3 實驗材料 44
4.3.1 工件 44
4.3.2 磨輪 45
4.4 磨削實驗設計 45
4.5 實驗設備架設 49
第5章 超聲振動輔助磨削機制 50
5.1 徑向超聲振動 50
5.1.1 振幅大於或等於切深[35] 50
5.1.2 振幅小於切深[35] 51
5.1.3 振動頻率與磨輪轉速關係[35] 51
5.2 軸向超聲振動 52
5.3 二維超聲振動[36] 53
5.3.1 磨粒運動軌跡示意 53
5.3.2 相位差 54
5.4 二維超聲磨粒軌跡程式 55
5.4.1 二維振動磨粒軌跡運動方程式 55
5.4.2 二維超聲磨削作用機制探討 57
5.4.3 振幅與未變形切屑面積關係 59
5.4.4 振幅與等效切屑厚度關係 60
第6章 實驗結果分析與討論 61
6.1 超聲振動平台特性量測 61
6.1.1 功率放大器穩定性測試與增益量測 61
6.1.2 振動平台與試片之共振頻率量測和電壓與振幅之關係 62
6.2 磨削加工參數影響實驗 64
6.2.1 固定振幅改變切深參數之實驗 66
6.2.2 固定振幅改變磨輪線速率參數之實驗 70
6.3 振幅參數影響之實驗 75
6.4 磨粒影響之實驗 81
6.5 表面形貌 83
6.6 切屑分析 94
第7章 結論與未來展望 99
7.1 結論 99
7.1.1 超聲振動輔助磨削作用機制 99
7.1.2 材料移除量 99
7.1.3 表面粗糙度 100
7.1.4 磨削力 100
7.1.5 比磨削能 101
7.1.6 表面形貌 101
7.1.7 改變磨粒 102
7.1.8 切屑分析 102
7.2 未來展望 103
參考文獻 104


[1] Ioan D.Marinescu, Toshiro K. Doi, Eckart Uhlmann, “Handbook of Ceramics Grinding and Polishing 2nd”, Elsevier, 2014
[2] 安永暢男,高木純一郎,精密機械加工原理,全華圖書,2004。
[3] E.J. Weller著,張瑞慶 譯,Nontraditional Machining Processes 2/e非傳統加工,高立圖書有限公司,1999。
[4] Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov, “Tribology of Abrasive Machining Processes 2nd", Willian Andrew, 2013
[5] J. P. R. Soney, The significance of Chip Thickness in Grinding," Annals of the CIRP, vol. 36, pp. 463-471, 1990
[6] 任敬心,康仁科,史興寬,難加工材料的磨削,國防工業出版社,1999
[7] S. Malkin and E. Lenz, "Burning limit for surface and cylindrical grinding of steels," Annals of the CIRP, vol. 27, pp. 233-236, 1978.
[8] Y. Furukawa, S. Ohishi, “Selection of Creep Feed Grinding Condition in View of Workpiece Burning”, Annals of the CIRP, Vol.28, No.1, pp.213, 1979.
[9] 陳熹棣 編譯,高週波基礎理論與應用,全華,1995。
[10] 朱建國,孫小松,李衛,電子與光電子材料,北京:國防工業出版社,2007。
[11] 鄭振東 編譯,超音波工程,全華,民國88年。
[12] 楊晨暉,雙層壓電式超音波馬達之研究,國立台灣大學機械所碩士論文,2005。
[13] H. Onikura, O. Ohnishi, J. Feng, T. Kanda, T. Morita, U. Bopp, “Effects of Ultrasonic Vibration on Machining Accuracy in Micro-drilling”, Int.J.JSPE, Vol.30, No.3, pp.1633-1637, 1996.
[14] Chun Xiang Ma, Eiji Shamoto, T. Moriwaki,”Drilling Assisted by Ultrasonic Elliptical Vibration”, Advances in Abrasive Technology VIII,pp.443-446, 2005.
[15] Z. W. Zhong, G. Lin, “Diamond Turning of a Metal Matrix Composite with Ultrasonic Vibrations”, Materials and Manufacturing Processes vol 20, pp. 727-735, 2005.
[16] 潘冠衛,振動加工應用於高速微銑削之研究,國立雲林科技大學機械所碩士論文,2004。
[17] 黃忠良 譯,精密陶瓷加工,復漢出版社,1999。
[18] Bi Zhang, X.L. Zheng, H. Tokura, M. Yoshikawa “Grinding induced damage in ceramics”, Journal of Materials Processing Technology 132, pp. 353-364, 2003.
[19] Bifano, T. G., Dow, T. A. and Scatergood, R. A., “Ductile regime grinding: A new technology for machining brittle materials,” Journal of Engineering for Industry Transaction ASME, 113, pp. 184-189, 1991.
[20] M. Nakamura, T. Sumomogi, T. Endo, “Evaluation of surface and subsurface cracks on nano-scale machined brittle materials by scanning force microscope and scanning laser microscope”, Surface and Coatings Technology 169-170, pp. 743–747,2003
[21] M A Shavva, V V Lapshin, S V Grubyy, ”Processing of brittle materials in nanometer rang of thickness of layers cut”, Materials Science and Engineering, 91, 012062, 2015
[22] Namba, Y.H., Kim, W.S., “Ultra-precision grinding of sapphire single crystals”, In: Proceedings of JSME Conference Manufacturing and Machine Tool, Inuyama, Japan, pp. 209–210, 2002.
[23] Weibin Gu, Zenqiang Yao, Xinguang Liang, “Material removal of optical BK7during single and double scratch tests”, Wear vol 270, pp. 241–246, 2011.
[24] Mingjun Chen, Qingliang Zhao, Shen Dong, Dan Li, “The critical conditions of brittle–ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding”, Journal of Materials Processing Technology vol 168, pp. 75–82, 2005.
[25] 胡淞儒,硬脆材料磨削變形與破壞之研究,國立清華大學機械所碩士論文,
2009。
[26] 盧建智,粉末冶金高速剛 ASP60 磨削條件之實驗與研究,國立清華大學機 械所碩士論文,1997。
[27] E. Uhlmann, G. Spur, “Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance,” CIRP Annals - Manufacturing Technology, Volume 47, Issue 1, pp. 249-252, 1998.
[28] D. Bhaduri, et al., "Ultrasonic Assisted Creep Feed Grinding of Inconel 718," Procedia CIRP 6, Pages 615-620, 2013.
[29] Zhiqiang Liang, Xibin Wang, Yongbo Wu, Lijing Xie, Zhibing Liu, LiJiao, Wenxiang Zhaoa, “Elliptical Ultrasonic Assisted Grinding (EUAG) of Monocrystal Sapphire- Surface Formation Characteristics -”Advanced Materials Research, Vols.126-126, pages 367-372, 2010
[30] Zhiqiang Liang, Xibin Wang, Yongbo Wu, Lijing Xie, Zhibing Liu, LiJiao, Wenxiang Zhaoa, “Experimental study on brittle–ductile transition in elliptical ultrasonic Assisted grinding (EUAG) of mono-crystal sapphire using single diamond abrasive grain”, International Journal of Machine Tools & Manufacture 71, Pages 41–51, 2013.
[31] Jianguo Gao ,et al., "Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool," International Journal of Machine Tools & Manufacture 79, Pages 49–61, 2014.
[32] T. Jacobs, et al., "Investigation of the Process-Material Interaction in Ultrasonic Assisted Grinding of ZrO2 based Ceramic Materials," Proceedings of 4th CIRP International Conference on High Performance Cutting, 2010.
[33] Dong Zhao, Haiting Zhang, "Study on Ultrasonic Aided Grinding Process," Second International Conference on Computer Modeling and Simulation,2010.
[34] Z. Liang, et al., "A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining," International Journal of Machine Tools and Manufacture, vol. 50, pp. 728-736, 2010.
[35] 黃郁珊,超聲振動輔助磨削硬脆材料之研究,國立清華大學機械所碩士論文,2011
[36] 李尚軒,超聲輔助磨削之切屑構形分析,國立清華大學機械所碩士論文,2013
[37] W. Brian Rowe, “Principle of Modern Grinding Technology 2nd", Willian Andrew, 2014
[38] Hans Kurt Toenshoff, Berend Denkena, “Basics of Cutting and Abrasive Process", Springer, 2013
[39] Stephen Malkin, “Grinding Technology,” Society of Manufacturing Engineers, 1989.
[40] Ioan D. Marinescu, Mike Hitchiner, Eckart Uhlmann, W. Brian Rowe and Ichiro Inasaki, “Handbook of Machining with Grinding Wheels,” CRC Press, 2006.
[41] B. Denkena, T. Friemuth, M. Reichstein, H.K. Tönshoff, “Potentials of Different Process Kinematics in Micro Grinding,” CIRP Annals - Manufacturing Technology, Volume 52, Issue 1, pp. 463-466, 2003

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top