|
[1] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90,Nov. 1998.
[2] T. Wiegand and B. Girod, “Lagrange multiplier selection in hybrid video coder control,” in Proc. Int. Conf. Image Process., 2001, pp. 542–545.
[3] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
[4] Y.-H. Huang, T.-S. Ou, P.-Y. Su, and H. H. Chen, “Perceptual ratedistortion optimization using structural similarity index as quality metric,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11, pp. 1614–1624, Nov. 2010.
[5] S. Wang, A. Rehman, W. Wang, S. Ma, and W. Gao, “SSIM-motivated rate distortion optimization for video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 4, pp. 516–529, Apr. 2012.
[6] C. Yeo, H. L. Tan, and Y. H. Tan, “On rate-distortion optimization using SSIM,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Mar. 2012, pp. 833–836.
[7] Z.-Y. Mai, C.-L. Yang, L.-M. Po, and S.-L. Xie, “A new rate-distortion optimization using structural information in H.264 I-frame encoder,” in Advanced Concepts for Intelligent Vision Systems. Berlin, Germany:Springer, 2005, pp. 435–441.
[8] C.-L. Yang, H.-X. Wang, and L.-M. Po, “Improved inter prediction based on structural similarity in H.264,” in Proc. IEEE Int. Conf. Signal Process. Commun., Nov. 2007, pp. 340–343.
[9] C.-L. Yang, R.-K. Leung, L.-M. Po, and Z.-Y. Mai, “An SSIM-optimal H.264/AVC inter frame encoder,” in Proc. IEEE Int. Conf. Intell. Comput. Intell. Syst., vol. 4. Nov. 2009, pp. 291–295.
[10] H. H. Chen, Y.-H. Huang, P.-Y. Su, and T.-S. Ou, “Improving video coding quality by perceptual rate-distortion optimization,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2010, pp. 1287–1292.
[11] S. Wang, S. Ma, and W. Gao, “SSIM based perceptual distortion rate optimization coding,” in Proc. SPIE Visual Commun. Image Process. Conf., vol. 7744. 2010.
[12] N.S. Jayant and Peter Noll , Digital coding of waveforms:Principles and applications to speech and video,Prentice Hall,Nar.1984.
[13] Z. Miličević, Z. Bojković „Subjective video quality assessment in H.264/AVC video coding standard“, Proceeding of XIX Telecommunication forum TELFOR 2011, pp. 1183-1186,Belgrade, Serbia, 22-24. November 2011.
[14] ITU-R BT.710-4 Subjective Assessment Methods for Image Quality in High-Definition Television. Jan 1998.
[15] P. Hanhart, et. al., “Subjective quality evaluation of the upcoming HEVC video compression standard,” in Proc. SPIE, Applications of Digital Image Processing,2012.
[16] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-constrained coder control and comparison of video coding standards,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp.688–703, Jul. 2003.
[17] S. Winkler, “A perceptual distortion metric for digital color video,” in Proc. SPIE, vol. 3644, 1999, pp. 175–184.
[18] D. A. Silverstein and J. E. Farrell, “The relationship between image fidelity and image quality,” in Proc. IEEE Int. Conf. Image Processing,1996, pp. 881–884.
[19] C. J. van den Branden Lambrecht and O.Verscheure, “Perceptual quality measure using a spatio-temporal model of the human visual system,” in Proc. SPIE, vol. 2668, 1996, pp. 450–461.
[20] Z. Wang, Q. Li, and X. Shang, “Perceptual image coding based on a maximum of minimal structural similarity criterion,” in Proc. IEEE Int.Conf. Image Process., vol. 2. Oct. 2007, pp. 121–124.
|