跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭家祺
研究生(外文):Kuo, Chia Chi
論文名稱:可應用於紅外線感測器之擁有固定圖像雜訊消除及感光區間調變的脈衝寬度調變高動態範圍讀出電路
論文名稱(外文):A High Dynamic Range Pulse Width Modulation Readout IC with Fixed Pattern Noise Reduction and Sensitive Range Tuning for IR Focal Plane Arrays
指導教授:謝志成謝志成引用關係
指導教授(外文):Hsieh, Chih Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:70
中文關鍵詞:高動態範圍脈衝寬度調變電容跨組抗放大器紅外線交平面陣列影像感測器
外文關鍵詞:HDRPWMCTIAIRFPAImage sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:2
本論文提出一個可應用於紅外線感測器(IR Focal Plane Arrays)與需要固定偏壓感測元件的脈衝寬度調變(Pulse Width Modulation)讀出電路,具有良好功率消耗(Good Power Efficiency)與高動態範圍(High Dynamic Range)特性,並達成固定圖像雜訊消除(Fixed Pattern Noise Reduction)與感光區間調變(Sensitive Range Tuning)功能。
為了達到良好的功率消耗表現,本論文所提出的電容反饋跨阻抗放大器(Capacitive Trans-impedance Amplifier)配合脈衝寬度調變讀出電路,將操作電壓由傳統紅外線感測器的3.3伏特降至1.5伏特。並且在曝光操作上使用了雙重曝光延續計算(Dual-Exposure Extended-Counting)技巧,成功克服傳統脈衝寬度調變讀出感測器,其曝光時間受到操作方式限制的問題。除了動態範圍延展,好的影像品質也必須兼具,因此在電路中利用耦合電容,實作出自動歸零與偏移電壓消除(Auto Zeroing & Offset Cancellation)機制來消除固定圖像雜訊。另外提出一個時間控制自動對其斜坡電壓(Aligned Time-Control Ramp)產生器,提供一個可調變斜率的閥值電壓(Threshold Voltage)供給脈衝寬度調變操作,達成感光區間調整的功能。
為驗證本電路,此架構使用0.18微米1P6M互補式金氧半導體製程製作,晶片總面積為1700×1800μm2,擁有64X64像素陣列並搭載上述構想的讀出電路原型,操作於類比端1.5伏特,數位端0.8伏特電壓下。量測驗證成果,此提出的高動態範圍讀出電路架構達到132dB的動態範圍,成功降低固定圖像雜訊至0.24%rms,230張的每秒顯示幀數,同時擁有1.27nW/frame ∙ pixel的功率消耗表現。

This thesis presents a good power efficiency and high dynamic range (HDR) Readout IC with pulse width modulation (PWM) for infrared focal plane arrays (IRFPAs) and the fixed bias needed sensors. The fixed pattern noise (PFN) reduction has been implemented and the sensitive range tuning function is available.
To achieve good power efficiency, the proposed capacitive trans-impedance amplifier (CTIA) with PWM readout circuit lower the operating voltage from 3.3V of conventional IR sensor to 1.5V. The operation of dual-exposure extended-counting (DEEC) exposure control overcome the limited exposure time issue of conventional PWM imager. Beside the dynamic range extension, fine image quality is also required. Hence, in order to implement the auto zeroing & offset cancellation (AZOC) mechanism, a coupling capacitance is added on the readout circuit to eliminate the FPN. Aligned time-control ramp (ATCR) generator is also developed and provides a tunable slope ramp threshold voltage for PWM readout operation which can achieve the sensitive range tuning function.
A prototype of 64×64 pixel imager employed these schemes has been designed and fabricated in 0.18um 1P6M CMOS technology with a chip area of 1700×1800μm2, operating under 1.5V for analog and 0.8V for digital. The measurement result shows the proposed HDR ROIC achieves 132dB dynamic range, below 0.24%rms FPN performance, 230fps frame rate and resulting 1.27nW/frame ∙ pixel power efficiency.

Abstract ii
Content iii
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Contribution 2
1.3 Thesis Organization 4
Chapter 2 Background Information 5
2.1 Characteristic of IR Detector 6
2.2 Architecture Selection 7
2.2.1 Review on Capacitive Trans-Impedance Amplifier 7
2.2.2 Dynamic Range Extension for IRFPAs 8
2.3 Design Consideration of CTIA+PWM ROIC 18
2.3.1 Exposure Time 19
2.3.2 Non-Ideal Effects 20
2.3.3 Pixel Area and Power Consumption 22
2.4 Sensitive Range Tuning 22
2.4.1 Tuning Concept 23
2.4.2 Tuning Issues 24
2.5 Summary 25
Chapter 3 High Dynamic Range CTIA+PWM readout with AZOC and ATCR 27
3.1 Dual Exposure Extended Counting [17] 27
3.2 Auto Zeroing & Offset Cancellation 29
3.3 Aligned Time Control Ramp 31
3.4 Summary 32
Chapter 4 Prototype Implementation of HDR ROIC 33
4.1 System Architecture of Proposed ROIC 33
4.2 In-Pixel Circuit 35
4.2.1 In-Pixel CDS with AZOC 35
4.2.2 CTIA Design 37
4.2.3 Column Buffer 38
4.3 Column Pulse to Digital Converter 39
4.3.1 Comparator 40
4.3.2 10b Counter and Latch 41
4.3.3 Level Shifter 42
4.4 Global ATCR Generator 42
4.4.1 Integrator 43
4.4.2 Bi-directional Current Source 44
4.4.3 Unity Gain Buffer 46
4.5 Column and Row Controls 46
4.6 Chip Operation 47
4.7 Summary 49
Chapter 5 Measurement Results 50
5.1 Chip Implementation 50
5.2 Measurement Environment Setup 52
5.3 Dynamic Range Extension 54
5.3.1 Lux Transfer Curve Response 55
5.3.2 Captured Images 56
5.4 Fixed Pattern Noise Reduction 58
5.4.1 Lux Transfer Curve Response 58
5.4.2 Captured Images 60
5.5 Sensitive Range Tuning Function 61
5.5.1 Lux Transfer Curve Response 61
5.5.2 Captured Images 62
5.6 Temporal Noise Measurement 63
5.7 Performance Summary and Comparison 64
Chapter 6 Conclusion and Future Work 65
6.1 Conclusion 65
6.2 Future Work 66
Bibliography 68


[1] Michael A Kinch, Fundamentals of Infrared Detector Materials | 2007
[2] Michael A Kinch, State-of-the-Art Infrared Detector Technology | 2014
[3] Jens Hashagen, Allied Vision Technologies GMBH, SWIR Applications and Challenges: A Primer
http://www.photonics.com/Article.aspx?AID=516646
[4] Hoffman, “Capacitor transimpedance amplifier (CTIA) with shared load,” US patent 6252462,2001
[5] H.-W. Yoon, M.-C. Dopkiss, G.-P. Eppeldauer, “Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors between 1μm and 2.5μm” in Proc. SPIE. 6297, Infrared Spaceborne Remote Sensing XIV, 629703, Aug. 2006
[6] J. Ohta, Smart CMOS Image Sensors and Applications, CRC Press
[7] S. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini, “A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2081-2091, Dec. 1998.
[8] R. Oi, and K. Aizawa, “Wide dynamic range imaging by sensitivity adjustable CMOS image sensor,” in Proc. ICIP, pp. 583-586, Sep. 2003,
[9] L.-W. Huang, C.-C, Hsieh, “A 1.8V Readout Integrated Circuit with Adapative Transimpedance Control Amplifier for IR Focal Plane Arrays” in Proc .IEEE Sensors, pp. 1145-1148, Oct 2011
[10] M. Mase, S. Kawahito, M. Sasaki, Y. Wakamori, and M. Furuta, “A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2787-2795, Dec. 2005.
[11] D. Kim, Y. Chae, J. Cho, and G. Han, “A Dual-Capture Wide Dynamic Range CMOS Image Sensor Using Floating-Diffusion Capacitor,” IEEE Trans. Electron Device, vol. 55, no. 10, pp. 2590-2594, Oct. 2008.
[12] T. Yamada, S. Kasuga, T. Murata, Y. Kato “A 140dB-Dynamic-Range MOS Image Sensor with In-Pixel Multiple-Exposure Synthesis” IEEE International Solid-State Circuits Conference(ISSCC), Feb. 2008
[13] W.-F. Chou, S.-F Yeh, “A 143dB 1.96% FPN Linear-Logarithmic CMOS Image Sensor with Threshold-Voltage Cancellation and Tunable Linear Range” in Proc. of 2012 IEEE Sensors Conference, Oct. 2012.
[14] H. Amhaz and G. Sicard, “A high output voltage swing logarithmic image sensor designed with on chip FPN reduction,” in Proc. PRIME, pp. 1-4, July 2010
[15] M.-T. Chung, et al., “A 0.5V 4.95uW 11.8fps PWM CMOS imager with 82dB dynamic range and 0.055% fixed-pattern noise,” ISSCC Dig. Tech. Papers, pp. 114-116, Feb. 2012.
[16] M. Shouho, K. Hashiguchi, K. Kagawa, and J. Ohta, “A Low-Voltage Pulse- Width-Modulation Image Sensor,” in IEEE Workshop on Charge-Coupled Devices & Advanced Image Sensors, pp. 226–229, Jun. 2005
[17] A.Y.-C. Chiou, C.-C. Hsieh, “A 0.4V self-powered CMOS imager with 140dB dynamic range and energy harvesting”, in Proc. IEEE symp. VLSI Circuit Dig, pp.86-87, Jun. 2015.
[18] Y. Ni, et al., “Flexible Wide Dynamic Range VGA ROIC for InGaAs SWIR Imaging”, in Proc. SPIE, vol. 8353, 835306, May 2012
[19] H.-H. Chen, C.-C. Hsieh, “An Inverter-based Capacitive Trans-impedance Amplifier Readout with Offset Cancellation and Temporal Noise Reduction for IR Focal Plane Array”, in Proc. SPIE, vol. 8907, 89074E, Sep. 2013.
[20] Y. Ni, et al., “Flexible Wide Dynamic Range VGA ROIC for InGaAs SWIR Imaging”, in Proc. SPIE, vol. 8353, 835306, May 2012.
[21] R. Xu, B. Liu, and J. Yuan, “A 1500 fps highly sensitive 256×256 CMOS imaging sensor with in-pixel calibration” IEEE J. Solid-State Circuits, vol. 47, Issue 6, pp. 1408-1418, May 2012
[22] C.-C. Kuo, C-C. Hsieh, “A 132dB DR Readout IC with Pulse Width Modulation for IR Focal Plane Arrays,” IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2015.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊