1. Chandra, T.K. and Ghosal, S. (1996), Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta Math. Hungar, 71, 327-336.
2. Chen, P., Bai, P. and Sung, S.H. (2014) The von Bahr-Esseen moment inequality for pairwise independent random variables and appliciation, J. Math. Anal. Appl. 419 1290-1302.
3. Chen, Y., Chen, A. Chen and Kai W. Ng (2010), The strong law of large numbers for extended negatively dependent random variables, J. Appl Prob. 47, 908-922.
4.Csorgo, S., Tandori, K. and Totik, V. (1983), On the strong law of large numbers for pairwise indepent random variables, Acta Math. Hungar, 42, 319-330.
5. Etmadi, N. (1981), An elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheor und verw. Geb. 55, 119-122.
6. Kolmogorov, A. (1933), Grundbegriffe der wahrscheinlichkeisrechnung, Springer-Verlag, Berlin.
7. Liu, L. (2009), Precise large deviations for depandent random variables with heavy tail, Statistics and Probability Letters, 79, 1290-1298.
8. Shen, A. (2011), Probability inequslities for END sequence and their applications, Journal of Inequalities and Applications, 2011:98.
9. Tang, X., (2013), Some strong laws of large numbers for weighted sums of asymptotically almost negatively associated random variables, Journal of Inequalities and Applications, 2013:4.
10. Yuan, D.M. and An ,J. (2009), Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications. Sci. China (Ser. A): Mathematices 52, 9, 1887-1904.
11. 王國龍 (2014), 關於廣義負相依隨機變數的極限理論之研究, 國立清華大學博士論文.