|
[1] A. Matsuda, "Microcrystalline silicon," Journal of Non-Crystalline Solids, vol. 338-340, pp. 1-12, 2004. [2] M. Tsuda, S. Oikawa, and K. Sato, "On the primary process in the plasma-chemical and photochemical vapor-deposition from silane mechanism of the radiative species si-star(1p) formation," Journal of Chemical Physics, vol. 91, pp. 6822-6829, Dec 1989. [3] A.Matsuda,"formation kinetics and control of microcrystallite in mu-c-si-h from glow-discharge plasmA," Journal of Non-Crystalline Solids, vol. 59-6, pp. 767-774, 1983 [4] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," Journal of Applied Physics, vol. 113, p. 234310, 2013. [5] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma," Applied Physics Letters, vol. 77, pp. 2828-2830, Oct 2000. [6] A. Bandopadhyay, A. Banerjee, and T. Debroy, "Nitrogen activity determination in plasmas," Metallurgical Transactions B-Process Metallurgy, vol. 23, pp. 207-214, Apr 1992. [7] V. Massereau-Guilbaud, I. Geraud-Grenier, and A. Plain, "Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power," Journal of Applied Physics, vol. 106, Dec 2009. [8] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," Plasma Physics and Controlled Fusion, vol. 40, pp. 1035-1056, Jun 1998. [9] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials, vol. 2, Sep 2001. [10] Y.-S. Cho, "Effect of Plasma Radical Composition in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells," IEEE TRANSACTIONS ON PLASMA SCIENCE, vol. 42, 2014. [11] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," Journal of Applied Physics, vol. 113, p. 234310, 2013. [12] Aman-ur-Rehman, H. C. Kwon, W. T. Park, and J. K. Lee, "A study of the role of various reactions on the density distribution of hydrogen, silylene, and silyl in SiH4/H2 plasma discharges," Physics of Plasmas, vol. 18, p. 093502, 2011. [13] H. Fujiwara and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells," Applied Physics Letters, vol. 90, p. 013503, 2007. [14] S. Danko, D. Bluhm, V. Bolsinger, W. Dobrygin, O. Schmidt, and R. P. Brinkmann, "A global model study of silane/hydrogen discharges," Plasma Sources Science and Technology, vol. 22, p. 055009, 2013. [15] B. J. Yan, J. Yang, and S. Guha, "Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates," Journal of Vacuum Science & Technology A, vol. 30, p. 10, Jul 2012. [16] C.-H. H. Yun-Shao Cho, Shui-Yang Lien, Dong-Sing Wuu, Pin Han, and a. J.-H. W. Chia-Fu Chen, "Effect of Plasma Radical Composition," IEEE Transactions On Plasma Science, vol. 42, 2014. [17] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-sections, rate constants and transport coefficients in silane plasma chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996 1996. [18] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1 1997. [19] O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, "Two-dimensional modelling of SiH4-H2 radio-frequency discharges for a-Si : H deposition," Plasma Sources Science & Technology, vol. 7, pp. 348-358, Aug 1998. [20] M. J. Kushner, "A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor-deposition of amorphous-silicon," Journal of Applied Physics, vol. 63, pp. 2532-2551, Apr 15 1988. [21] S. J. Buckman and A. V. Phelps, "Vibrational-excitation of d2 by low-energy electrons," Journal of Chemical Physics, vol. 82, 1985. [22] M. Kurachi and Y. Nakamura, "Electron collision cross-sections for the monosilane molecule," Journal of Physics D-Applied Physics, vol. 22, pp. 107-112, Jan 1989. [23] E. Krishnakumar and S. K. Srivastava, "Ionization cross-sections of silane and disilane by electron-impact," Contributions to Plasma Physics, vol. 35, pp. 395-404, 1995 1995. [24] J. Perrin, J. P. M. Schmitt, G. Derosny, B. Drevillon, J. Huc, and A. Lloret, "Dissociation cross-sections of silane and disilane by electron-impact," Chemical Physics, vol. 73, pp. 383-394, 1982 1982. [25] Cross Sections for Electron Collisions with Hydrogen Molecules, YOON et al., J. Phys. Chem. Ref. Data, 2008 [26] Kimura and H. Kasugai et al , Properties of inductively coupled rf Ar / H2 plasmas: Experiment and global model, T., J. Appl. Phys., 2010 [27] A T Hjartarson et al , Low pressure hydrogen discharges diluted with argon explored using a global model, Plasma Sources Sci. Technol.,2010 [28] M B Shah, D S Elliott and H B Gilbody, Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact, J. Phys. B: At. Mol. Phys., 1987 [29] R. C. Wetzel et al, Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, 1986 [30] Me´ndez, et al., Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas, J. Phys. Chem., 2006 [31] Hybrid Monte Carlo ,fluid modeling network for an argony hydrogen direct current glow discharge., A. Bogaerts, R. Gijbels, Spectrochimica Acta Part B, 2002 [32] 古傅偉,Study of a capacitively coupled silane/hydrogen discharge by omputer simulation – physical/chemical mechanism and parametric analysis,2011
|