(3.238.174.50) 您好!臺灣時間:2021/04/18 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:駱那登
研究生(外文):Loganathan
論文名稱:開發複合鑽石陰極材料之微電漿裝置於高穩定性紫外光發射源之研究
論文名稱(外文):Development of microplasma devices with hybrid diamond cathode for high stability UV emission sources
指導教授:柳克強
指導教授(外文):Leou, Keh-Chyang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:128
中文關鍵詞:微電漿鑽石紫外光
外文關鍵詞:MicroplasmaDiamondUltraviolet light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
Abstract

This thesis describes the development of microplasma devices architecture by hybrid diamond as cathode. These microplasma devices are suitable for UV emission sources and corresponding applications. The cathode boundary layer (CBL) discharge device structure has been implemented in this study, which consist of 2 mm cylindrical cavity in the centre of anode. Here, two types of devices were fabricated, such as two electrode and novel three electrode devices. These devices were tested with Ar (10 %) + N2 (90 %) gas used as discharge medium for generation of UV emissions. The current – voltage relationship and optical emission spectra were studied for two devices, while HiD (nanocrystalline diamond/ultrananocrystalline diamond) coated Si tip cathode.
The microplasma illumination behavior was investigated for different diamond films including microcrystalline diamond (MCD), ultrananocrystalline diamond UNCD, planar HiD and HiD coated Si tip cathodes for the case of two-electrode microplasma device. From these results, the HiD coated over Si tip shows the better plasma illumination intensity compared with other electrodes due to its excellent electron field emission property (E0 = 9.1; Je = 4.53 @ 18.1 V/µm; β = 1605). The lifetime stability of the microplasma devices were studied by means of electrode degradation by plasma damage and variation of plasma intensity for two-electrode device. However, the electrode degradation causes the limitation of the lifetime stability in two electrode device due to high filed strength on cathode, which leads to ion bombardment. To overcome this problem, the third electrode has been added to the two electrode devices, which results in lower applied voltages on diamond cathode for longer lifetime. The cathode material in case of the three electrode microplasma device has been exhibited longer lifetime than the two electrode device. In case of the HiD/Si tip based two-electrode device operated at current density of ~ 3.5 mA/cm2 with applied voltage of 500 V, the device shown the lifetime stability of 2.9 hr. In case of the three-electrode device, which operated at anode current density (Ja) = 3.2 mA/cm2 (applied voltage 440 V) and cathode current density (Jc) = 1.8 mA/cm2 (applied voltage 160 V), the stability of the device came up to 4.3 hr without any decay in current density. The plasma intensity of the three electrode device was markedly higher in comparison with two electrode device due to the additional third electrode, which results in generation of extended positive column. We observed the near UV emissions for both devices, which arising from N2 second positive. The resultant near UV emissions attained at wavelengths of 296.5 nm, 315.5 nm, 336.5 nm, 353.1 nm, 357.3 nm, 375.1 nm and 379.8 nm. Therefore, this hybrid diamond based three electrode CBL device has great potential for practical applications as a robust UV source.

Abstract

This thesis describes the development of microplasma devices architecture by hybrid diamond as cathode. These microplasma devices are suitable for UV emission sources and corresponding applications. The cathode boundary layer (CBL) discharge device structure has been implemented in this study, which consist of 2 mm cylindrical cavity in the centre of anode. Here, two types of devices were fabricated, such as two electrode and novel three electrode devices. These devices were tested with Ar (10 %) + N2 (90 %) gas used as discharge medium for generation of UV emissions. The current – voltage relationship and optical emission spectra were studied for two devices, while HiD (nanocrystalline diamond/ultrananocrystalline diamond) coated Si tip cathode.
The microplasma illumination behavior was investigated for different diamond films including microcrystalline diamond (MCD), ultrananocrystalline diamond UNCD, planar HiD and HiD coated Si tip cathodes for the case of two-electrode microplasma device. From these results, the HiD coated over Si tip shows the better plasma illumination intensity compared with other electrodes due to its excellent electron field emission property (E0 = 9.1; Je = 4.53 @ 18.1 V/µm; β = 1605). The lifetime stability of the microplasma devices were studied by means of electrode degradation by plasma damage and variation of plasma intensity for two-electrode device. However, the electrode degradation causes the limitation of the lifetime stability in two electrode device due to high filed strength on cathode, which leads to ion bombardment. To overcome this problem, the third electrode has been added to the two electrode devices, which results in lower applied voltages on diamond cathode for longer lifetime. The cathode material in case of the three electrode microplasma device has been exhibited longer lifetime than the two electrode device. In case of the HiD/Si tip based two-electrode device operated at current density of ~ 3.5 mA/cm2 with applied voltage of 500 V, the device shown the lifetime stability of 2.9 hr. In case of the three-electrode device, which operated at anode current density (Ja) = 3.2 mA/cm2 (applied voltage 440 V) and cathode current density (Jc) = 1.8 mA/cm2 (applied voltage 160 V), the stability of the device came up to 4.3 hr without any decay in current density. The plasma intensity of the three electrode device was markedly higher in comparison with two electrode device due to the additional third electrode, which results in generation of extended positive column. We observed the near UV emissions for both devices, which arising from N2 second positive. The resultant near UV emissions attained at wavelengths of 296.5 nm, 315.5 nm, 336.5 nm, 353.1 nm, 357.3 nm, 375.1 nm and 379.8 nm. Therefore, this hybrid diamond based three electrode CBL device has great potential for practical applications as a robust UV source.

Abstract………………………………………………………………………...(III)
Acknowledgements………………………………………………….................(V)
Table of Contents………………………………………………………………(VII)
List of figures and tables…………………………………………………….....(XI)

Chapter 1
INTRODUCTION…………...…………………….........................................(1)

1.1. Microplasma………………………………………………………...(1)
1.2. Gas breakdown process.………………………………………….....(2)
1.3. Overview of microplasma discharge devices …...……………..…...(5)
Chapter 2
LITERATURE REVIEW………..…………………………………………(9)
2.1 Microplasma based UV sources…………………………………….(9)
Chapter 3
EXPERIMENTAL EQUIPMENT AND TECHNIQUES………….(18)
3.1 Synthesis of diamond film…………………………………………(18)
3.1.1 Deposition techniques………………………………………(18)
3.1.2 Physical and chemical process during the growth of diamond films………………………………………………………………………...(19)
3.1.3 Growth process of diamond films…………………………..(21)
3.2 Scanning electron microscopy (SEM)………………………….….(23)
3.3 RAMAN spectroscopy…………………………………………….(24)
3.4 Electron Field Emission (EFE) measurement……………………..(25)
3.5 Photolithography and reactive ion etcher (RIE)…………………..(27)
3.6 Microplasma discharge image capturing setup…………………...(29)
3.7 Optical emission spectroscopy (OES) Setup……………………...(30)
Chapter 4
EXPERIMENTAL PROCESS……………………………………...........(32)
4.1 Experimental process flow and Experimental techniques…………(32)
4.2 Fabrication of Si Tip Process………………………………….......(33)
4.3 Microwave plasma enhanced chemical vapor deposition for hybrid diamond growth……………………………………………………….….(33)
4.4 Synthesis of diamond coated carbon nanotube (CNT)…………….(36)
4.5 Morphology, Microstructure & Bonding characterization………...(37)

Chapter 5
EXPERIMENTAL RESULTS AND DISCUSSION…………...........(38)
5.1 FESEM and Raman studies of different diamond films ……….….(38)
5.2 FESEM and Raman studies of hybrid diamond (HiD) coated Si tip(46)
5.3 Electron Field emission Properties ………………………………..(48)
5.4 Microdischarge devices configuration and electrical connection setup………………………………………………………………………(52)
5.4.1 Two-electrode microdischarge device configuration……….(52)
5.4.2 Two-electrode device electrical connection………………...(53)
5.4.3 Three-electrode microdischarge device configuration….......(53)
5.4.4 Three-electrode device electrical connection……………….(54)
5.5 Microdischarge electrical characteristics………………………….(56)
5.5.1 I-V characteristics of two-electrode discharge device……...(56)
5.5.2 Electron temperature calculation (Te)………………………..(57)
5.5.3 Plasma illumination properties of two-electrode discharge device……………………………………………………………………..(64)
5.5.4 I-V characteristics for three-electrode discharge device…...(67)
5.5.5 I-V Characteristics for case-1 Plasma discharge generation..(68)
5.5.6 I-V Characteristics for case-2 Plasma discharge generation..(72)
5.6 Optical emission spectroscopy (OES analysis)…………………………..(75)
5.6.1 UV emission intensity calculation…………………………..(77)
5.6.2 Integrated intensity of emission spectrum…………………..(79)
5.7 Lifetime property studies…………………………………………..(82)
5.7.1 Microplasma device cathode material lifetime……………..(82)
5.7.2 Microplasma device damage at anode material……………(95)
5.8 Array of microdischarge device…………………………………...(95)
5.8.1 Schematic diagram of array discharge device…………..….(96)
5.8.2 I-V characteristics…………………………………………..(97)
5.8.3 Microplasma illumination properties……………………….(99)
Chapter 6
Conclusion…………………………………………………..............(101)
List of References……………………………………………………..……….(104)
Appendix……………………………………………………………………….(125)

[1] A. Fridman and L. Kennedy, “Plasma Physics & Engineering,” New York: CRC Press (2004).
[2] D. Staack, B. Farouk, A. Gutsol and A. Fridman, “DC normal glow discharges in atmospheric pressure atomic and molecular gases,” Plasma Sources Science & Technology 17, 025013, 1-13 (2008).
[3] K. H. Becker, K. H. Schoenbach and J. G. Eden, “Microplasmas and applications,” J. Phys D:Appl. Phys., 39, R55-R70 (2006).
[4] H. Wang, G. Li, L. Jia, L. Li and G. Wang, “High-temperature anisotropic silicon-etching steered synthesis of horizontally aligned silicon-based Zn2SiO4 nanowires,” Chem. Commun.,7, 3786-3788 (2009).
[5] P. Kurunczi, J. Lopez, H. Shah and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass spectrum., 205, 277- 283 (2001).
[6] T. Svensson, M. Andersson, L. Rippe, J. Johansson, S. Folestad and S. Andersson-Engels, “High sensitivity gas spectroscopy of porous, highly scattering solids,” Opt.Lett., 33, 80-82 (2008).
[7] M. Saito, T. Hiraga, M. Hattori, S. Murakami and T. Nakai, “An investigation of pipeline materials for continuous hyperpolarized 129Xe gas spectroscopy,” Magn. Reson. Imaging., 23, 607- 610 (2005).
[8] L. Que, C. G. Wilson and Y. B. Gianchandani, “Microfluidic Electrodischarge Devices With Integrated Dispersion Optics for Spectral Analysis of Water Impurities,” J.Microelectromech. Syst.,14, 185-191 (2005).
[9] Chakraborty A K and Golumbfskie A J, “POLYMER ADSORPTION–DRIVEN SELF-ASSEMBLY OF NANOSTRUCTURES,”Annu. Rev. Phys. Chem. 52, 537-573 (2001).
[10] Wikipedia, Microplasmas. [Retrieved 2011 February]. Available at:
http://en.wikipedia.org/wiki/Microplasma
[11] V. Gostev and D. Dobrynin, Medical microplasmatron. 3rd International Workshop on Microplasmas (IWM-2006). Greifswald, Germany (2006).
[12] F. A. Misyn and V. A. Gostev, “‘‘Cold’’ Plasma Application in Eyelid Phlegmon Curing’’, Diagnostics and treatment of infectious diseases, Petrozavodsk, Russia (2000).
[13] G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets,A. Fridman, “Applied plasma medicine,” Plasma Process Polym 5(6),503-533 (2008).
[14] D. Mariotti and R. M. Sankaran, “ Microplasmas for nanomaterials synthesis,” J Phys D: Appl Phys 43, 323001 (1-21) (2010).
[15] R. M. Sankaran, D. Holunga, R. C. Flagan, K. P. Giapis, “Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges,” Nano Lett., 5, 537-541 (2005).
[16] R. Foest, M. Schmidt and K. Becker, “Microplasmas, an emerging field of low-temperature plasma science and technology,” International Journal of Mass Spectrometry 248, 87–102 (2006).
[17]. Kunihide Tachibana, “Current Status of Microplasma Research,” IEEJ Trans 1, 145–155 (2006).
[18] M.J. Kushner, “Modelling of microdischarge devices: plasma and gas dynamics,” J. Phys. D 38, 1633- 1643, (2005).
[19] F. Paschen, "On sparking over in air, hydrogen, carbon dioxide under the potential corresponding to various pressures." Wiedemann Annalen der Physik und Chemie 37, 69-96 (1889).
[20] M. Moselhy and K. H. Schoenbach, “Excimer emission from cathode boundary layer discharges,” J Appl Phys., 95, 1642-1649 (2004).
[21] M. S. Benilov, “Comment on ‘Self-organization in cathode boundary layer discharges in xenon’ and ‘Self-organization in cathode boundary layer microdischarges’ ” Plasma Sources Sci Technol., 16, 422-425 (2007).
[22] W. Zhu, N. Takano, K. H. Schoenbach, “Direct current planar excimer source,” J Phys D: Appl Phys., 40, 3896-3906 (2007).
[23] J. A. Wright, R. A. Miller, E. G. Nazarov "Atmospheric Pressure Air microplasma Ionization Source for Chemical Analysis Applications," 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul., 378-381 (2006).
[24] F. Iza and J. Hopwood, “Rotational, vibrational, and excitation temperatures of microwave frequency microplasma,” IEEE Trans Plasma Sci., 32, 498-504 (2004).
[25] E. E. Kunhardt, K. Becker and L. Amorer, “Suppression of the glow-to-arc transition,” Proceedings XII International Conference on Gas Discharges and Their Applications, Greifswald, Germany.
[26] E. E. Kunhardt, “Generation of large-volume, atmospheric- pressure, non-equilibrium plasmas,” IEEE Trans Plasma Sci., 28, 189-200 (2000).
[27] W. Shi, R. H. Stark and K. H. Schoenbach, “Parallel Operation of Microhollow Cathode Discharges,” IEEE Trans Plasma Sci., 27, 16-17 (1999).
[28] S. J. Park and J. G. Eden, "Stable microplasmas in air generated with a silicon inverted pyramid plasma cathode," IEEE Trans Plasma Sci., 33, 570-571 (2005).
[29] J. G. Eden, S. J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Physics and Controlled Fusion., 47, B83-92 (2005).
[30] S. O. Kim and J. G. Eden, "Arrays of microplasma devices fabricated in photodefinable glass and excited AC or DC by interdigitated electrodes," in Photonics Technology Letters, IEEE ,17, 1543-1545 (2005).
[31]. N. Masoud, K. Martus and K. Becker, “Vacuum ultraviolet emissions from a cylindrical dielectric barrier discharge in neon and neon–hydrogen mixtures,” International Journal of Mass Spectrometry 233, 395–403 (2004).
[32]. A. Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen,“Gas discharge plasmas and their applications,” Acta B: At. Spectrosc. 57 (4), 609 (2002).
[33]. U. Kogelschatz,“Applications of Microplasmas and Microreactor Technology,” Contrib. Plasma Phys. 47, No. 1-2, 80 – 88 (2007).
[34]. B. J. Ricconi, S. J. Park, S. H. Sung, P. A. Tchertchian and J. G. Eden, “Ultraviolet emission from OH and ArD in microcavity plasma devices,” ELECTRONICS LETTERS Vol. 43 No. 22 (2007).
[35] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond.Sci.Technol.,26,014036(2011).
[36] M. Asif Khan, “AlGaN multiple quantum well based deep UV LEDs and their applications,” physica status solidi (a)., 203, 1764–1770 (2006).
[37] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, “222–282 nmAlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Stat Sol A., 206, 1176–1182 (2009).
[38] Y. Taniyasu1, M. Kasu1 and T. Makimoto “An aluminium nitride light-emitting diode with a wavelength of 210 nanometers,” Nature 441, 325-328 (2006).
[39] H. Hirayama, S. Fujikawa and N. Kamata “Recent Progress in AlGaN-Based Deep-UV LEDs” Electronics and Communications in Japan, 98, No. 5, (2015).
[40] D. Yeong Kim, J. Hyuk Park, J. Won Lee, S. Yong Hwang, S. Jae Oh, J. Sub Kim, C. Sone, E. Fred Schubert and J. Kyu Kim “Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission” Light: Science & Applications 4, e263 (1-8) (2015).
[41]http://www.lumec.com/learning-enter/led/advantages_and_disadvantages.html
[42] I. Petzenhauser, L. D. Biborosch, U. Ernst, K. Frank and K. H. Schoenbach, “Comparison between the ultraviolet emission from pulsed microhollow cathode discharges in xenon and argon,” Appl. Phys. Lett. 83, 4297- 4299 (2003).
[43] J. W. Frame, D. J. Wheeler, T. A. DeTemple and J. G. Eden, “Microdischarge devices fabricated in silicon,” Appl. Phys.Lett., 71, 1165-1167 (1997).
[44] C. Penache, M. Miclea, A. Braeuning-Demian, O. Hohn, S. Schoessler, T. Jahnke, K. Niemax and H. Schmidt-Boecking, “Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy,” Plasma Sources Sci.Technol. 11, 476 (2003).
[44] P. Kurunczi, K. Martus and K. Becker, “Neon excimer emission from pulsed high-pressure microhollow cathode discharge plasmas,” Int. J. Mass. Spectrom., 223, 37 – 43 (2003).
[45] K. H. Schoenbach, A. El-Habachi, M. Moselhy, W. Shi and R. H. Stark, “Microhollow cathode discharge excimer lamps,” Phys. Plasmas., 7, 2186 - 2191 (2000).
[46] A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high-pressure hollow cathode discharges,”Appl. Phys. Lett., 72, 22 - 24 (1998).
[47] A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73 885-887 (1998).
[48] A. El-Habachi, W. Shi, M. Moselhy, R. H. Stark and K. H. Schoenbach, “Series operation of direct current xenon chloride excimer sources,” J.Appl. Phys. 88 3220-3224 (2000).
[49] J. W. Frame, P. C. John, T. A. DeTemple and J. G. Eden, “Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge,” Appl.Phys. Lett., 72, 2634 - 2636 (1998).
[50] J. Y. Zhang and I. W. Boyd, “Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare‐gas/halogen mixtures,” J. Appl. Phys. 80 633-638 (1996).
[51] S. J. Park, J. G. Eden, J. Chen and C. Liu, “Microdischarge devices with 10 or 30μm square silicon cathode cavities: pd scaling and production of the XeO excimer,” Appl. Phys. Lett. 85, 4869-4871 (2004).
[52] R. S. Taylor, K. E. Leopold and K. O. Tan, “Continuous B→X excimer fluorescence using direct current discharge excitation,” Appl. Phys. Lett. 59, 525-527 (1991).
[53] S. J. Park, J. Chen, C. Liu and J. G. Eden, “Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays,” Appl. Phys. Lett., 78, 419-421 (2001).
[54] A. Y. Sarani, A. Y. Nikiforov, and C. Leys, “Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements,” Physics of Plasmas 17, 063504 (2010).
[55] M. Moselhy, W. Shi, R. H. Stark and K. H. Schoenbach, “Xenon excimer emission from pulsed microhollow cathode discharges.” Appl. Phys. Lett., 79, 1240-1242 (2001).
[56] N. Masoud, K. Martus and K. Becker, “Vacuum ultraviolet emissions from a cylindrical dielectric barrier discharge in neon and neon–hydrogen mixtures,” Int. J. Mass Spectrom., 233, 395-403 (2004).
[57] N. Masoud, K. Martus and K. Becker , “VUV emission from a cylindrical dielectric barrier discharge in Ar and in Ar/N2 and Ar/air mixtures,” J. Phys. D., 38, 1674 (2005).
[58] J. E. Field, “Ed. The Properties of Diamond,” Academic Press: London, 4, 22 (1979).
[59] S. Kunuku, K. J. Sankaran, C. L. Dong, N. H. Tai, K. C. Leou and I.N. Lin, “ Development of long lifetime cathode materials for microplasma application,” RSC Adv., 4, 47865–47875 (2014).
[60] K. J. Sankaran, S. Kunuku, S. C. Lou, J. Kurian, H. C. Chen, C. Y. Lee, N. H. Tai, K. C. Leou, C. Chen and I.N. Lin, “ Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods,” Nanoscale Research Letters7, 522 (2012).
[61] T. Chang, S. Kunuku, K. J. Sankaran, K. C. Leou, N. H. Tai and I. N Lin, “ Enhancing the stability of microplasma device utilizing diamond coated carbon nanotubes as cathode materials,” Applied Physics Letters 104, 223106 (2014).
[62] A. Venkattraman, “Theory and analysis of operating modes in microplasmas assisted by field emitting cathodes,” Physics of Plasmas, 22, 057102 (2015).
[63] A. Venkattraman, “Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas,” Physics of Plasmas, 20, 113505 (2013).
[64] A. Semnani, A.Venkattraman, A. Alexeenko and D. Peroulis, “Pre-breakdown evaluation of gas discharge mechanisms in microgaps,” Applied Physics Letters, 102, 174102 (2013).
[65] M. Jinno, S. Takubo, Y. Hazata, S. Kitsinelis and H. Motomura, “Nitrogen: a possible substitute for mercury as a UV-emitter for mercury-less low-pressure discharge fluorescent lamps using Penning-like energy transfer ,” J. Phys. D: Appl. Phys. 38, 3312–3317 (2005).
[66] S. Kitsinelis, H. Motomura and M. Jinno, “J. Light Vis. Environ. 30, 9–12 (2006).
[67] R. Friedl and U. Fantz , “Spectral intensity of the N2 emission in argon low-pressure arc discharges for lighting purposes,” New J. Phys., 14, 043016 (2012).
[68] M. Moselhy, I. Petzenhauser, K. Frank and K. H. Schoenbach, “Excimer emission from microhollow cathode argon discharges,” J. Phys. D: Appl. Phys. 36, 2922–2927 (2003).
[69] K. H. Schoenbach, M. Moselhy, W. Shi, and R. Bentley, “Microhollow cathode discharges,” Journal of Vacuum Science & Technology A 21, 1260 (2003).
[70] Karl H. Schoenbach, “High-Pressure Microdischarges: Sources of Ultraviolet Radiation,” IEEE JOURNAL OF QUANTUM ELECTRONICS.,48, 6 (2012).
[71] M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Applied Physics Letters 78, 880 (2001).
[72] K. Becker, P. F. Kurunczi, M. Moselhy and K. H. Schoenbach, “Vacuum ultraviolet spectroscopy of microhollow cathode discharge Plasmas,” Proceedings of SPIE Vol. 4460 (2002).
[73] P. Kurunczi, H. Shah and K. Becker, “Hydrogen Lyman- and Lyman-β emissions from high-pressure microhollow cathode discharges in Ne–H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, L651–L658 (1999).
[74] P. von Allmen, S. T. McCain, N. P. Ostrom, B. A. Vojak, J. G. Eden, F. Zenhausern, C. Jensen, and M. Oliver, “Ceramic microdischarge arrays with individually ballasted pixels,” Applied Physics Letters 82, 2562 (2003).
[75] B. J. Ricconi, S.-J. Park, S. H. Sung, P. A. Tchertchian, and J. G. Eden, “O H ( A Σ + 2 ) and rare gas-deuteride (NeD, ArD) excimers generated in microcavity plasmas: Ultraviolet emission spectra and formation kinetics,” Applied Physics Letters 90, 201504 (2007).
[76] S. J. Park, J. Chen, C. J. Wagner, N. P. Ostrom, C. Liu and J. G. Eden, “Microdischarge Arrays: A New Family of Photonic Devices,” IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, 8 (2002).
[77] B. Debord, F. Gérôme, R. Jamier, C. Boisse-Laporte, P. Leprince, O. Leroy, J.-M. Blondy, F. Benabid1, “First Ignition of an UV Microwave Microplasma in Ar-filled Hollow-Core Photonic Crystal Fibers,” ECOC Technical Digest © 2011.
[78] B. Debord, R. Jamier, F. Gérôme, C. Boisse-Laporte, P. Leprince, O. Leroy, J.-M. Blondy, F. Benabid, “UV light generation induced by microwave microplasma in hollow-core optical waveguides,” ©2010 Optical Society of America.
[79] R. M. Sankaran and K. P. Giapis, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett., Vol. 83, (2003).
[80] B. J. Lee, H. Rahaman, I. Petzenhauser, K. Frank, and K. P. Giapis, “Xenon excimer emission from pulsed high-pressure capillary microdischarges,” Applied Physics Letters 90, 241502 (2007).
[81] B. J. Lee, H. Rahaman, S. H. Nam, K. P. Giapis, M. Iberler, J. Jacoby and K. Frank, “Xenon excimer emission from multicapillary discharges in direct current mode,” Physics of Plasmas., 18, 083506 (2011).
[82] F. Adler, E. Davliatchine and E. Kindel, “Comprehensive parameter study of a micro-hollow cathode discharge containing xenon,” J. Phys. D: Appl. Phys. 35, 2291–2297 (2002).
[83] R. Bussiahn, E. KindelUP, A. PipaP, “Characterization of a miniaturized dielectric barrier discharge as source of pulsed XeCl excimer radiation at 308 nm,” 29th ICPIG, July 12-17, Cancun, Mexico (2009).
[84] M. I. Lomaev, V. S. Skakun, EÂ. A. Sosnin, V. F. Tarasenko, D. V. Shitts, M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Physics ± Uspekhi 46 (2) 193 ± 209 (2003).
[85] V. F. Tarasenko, E. B. Chernov, M. V. Erofeev, M. I. Lomaev, A. N. Panchenko, V. S. Skakun, E. A. Sosnin, D. V. Shitz, “UV and VUV excilamps excited by glow, barrier and capacitive discharges,” Appl. Phys. A 69, S327–S329 (1999).
[86] T. I. Lee, K. W. Park, H. S. Hwang, J. P. Jegal, and H. K. Baik, “Self-expanded microcapillary positive column for highly efficient vacuum ultraviolet Sources,” Applied Physics Letters 88, 211502 (2006).
[87] J. Stephens, A. Fierro, B. Walls, J. Dickens, and A. Neuber, “Nanosecond, repetitively pulsed microdischarge vacuum ultraviolet source,” Applied Physics Letters 104, 074105 (2014).
[88] J. Y. Zhanga and I. W. Boyd, “Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare-gas/halogen mixtures,” J. Appl. Phys. 80 (2), (1996).
[89] B. Eliasson and U. Kogelschatz, “UV Excimer Radiation from Dielectric-Barrier Discharges,” Appl. Phys. B 46, 299-303 (1988).
[90] A. Rahman, A. P. Yalin, V. Surla, O. Stan, K. Hoshimiya, Z. Yu, E. Littlefield and G. J. Collins, “Absolute UV and VUV emission in the 110–400nm region from 13.56MHz driven hollow slot microplasmas operating in open air,” Plasma Sources Sci. Technol. 13, 537–547 (2004).
[91] C. Foissac, J. Kriˇstof, A. Annuˇsov´a1, V. Martiˇsovitˇ, P. Veis and P. Supiot, “Vacuum UV and UV spectroscopy of a N2–Ar mixture discharge created by an RF helical coupling device,” Plasma Sources Sci. Technol. 19, 055006 (2010).
[92] Y. A. Lebedev, T. B. Mavludov, I. L. Epstein, A. V. Chvyreva and A. V. Tatarinov, “The effect of small additives of argon on the parameters of a non-uniform microwave discharge in nitrogen at reduced pressures,” Plasma Sources Sci. Technol. 21, 015015 (2012).
[93] S. Mitea, M. Zeleznik, M. D. Bowden, P. W. May, N. A. Fox, J. N. Hart and N. S. Braithwaite, “Generation of microdischarges in diamond substrates,” Plasma Sources Science and Technology, 21(2), 022001 (2012).
[94] K. E. Spear and J. P. Dismukes, “Synthetic diamond: Emerging CVD science and Technology,” Wiley, Pennington, NJ (1994).
[95] B. Dischler and C. Wild, “Low-pressure synthetic diamond: Manufacturing and applications,” Springer, Heidelberg (1998).
[96] D. M. Gruen, “Nanocrystalline diamond films,” Annu. Rev. Mater. Sci. 29, 211–259 (1999).
[97] M. N. R. Ashfold, P. W. May, and C. A. Rego, “Thin Film Diamond by Chemical Vapour Deposition Methods,” CHEMICAL SOCIETY REVIEWS (1994).
[98] Y. Chakk, R. Brener, and A. Hoffman, “Enhancement of diamond nucleation by ultrasonic substrate abrasion with a mixture of metal and diamond particles,” Appl. Phys. Lett. 66, 2819–2821 (1995).
[99] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. Lond. A 119, 173 (1928).
[100] http://www.upmostgroup.com/tw/product/info/114/738
[101] http://oceanoptics.com/product/hr4000-custom/
[102] T. H. Chang, S. Kunuku, J. Kurian, A. Manekkathodi, L. J. Chen, K. C. Leou, N. H. Tai, and I. N. Lin, “Role of Carbon Nanotube Interlayer in Enhancing the Electron Field Emission Behavior of Ultrananocrystalline Diamond Coated Si-Tip Arrays,” ACS Appl. Mater. Interfaces.,7, 7732−7740 (2015).
[103] P. W. May, M. N. R. Ashfold, and Yu. A. Mankelevich, “Microcrystalline, nanocrystalline, and ultrananocrystalline diamond chemical vapor deposition: Experiment and modeling of the factors controlling growth rate, nucleation, and crystal size,” JOURNAL OF APPLIED PHYSICS 101, 053115 (2007).
[104] K. J. Sankaran, J. Kurian, H. C. Chen, C. L. Dong, C. Y. Lee, N. H. Tai and I. N. Lin, “Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma” J. Phys. D: Appl. Phys. 45, 365303 (2012).
[105] R. G. Buckley, T. D. Moustakas, Ling Ye and J. Varon, “Characterization of filament‐assisted chemical vapor deposition diamond films using Raman spectroscopy,” J. Appl. Phys. 66, 3595 (1989).
[106] T. H. Chang, S. Kunuku,Y. J. Hong, K. C. Leou, T. R. Yew, N. H. Tai and I.N. Lin, “Enhancement of the Stability of Electron Field Emission Behavior and the Related Microplasma Devices of Carbon Nanotubes by Coating Diamond Films,” ACS Appl. Mater. Interfaces 6, 11589−11597 (2014).
[107] S. C. Lou, C. Chen, S. Kunuku, K. C. Leou, C. Y. Lee, H. C. Chen and I.N. Lin, “Development of diamond cathode materials for enhancing the electron field emission and plasma characteristics using two-step microwave plasma enhanced chemical vapor deposition process,” Journal of Vacuum Science & Technology B 32, 021202 (2014).
[108] M. W. Geis, N. N. Efremow, and K. E. Krohn, “A new surface electron-emission mechanism in diamond cathodes,” Nature 393, 431 – 435 (1998).
[109] J. Y. Shim, E. J. Chi, H. K. Baik, and K. M. Song, “Field emission characteristic of diamond films grown by electron assisted chemical vapor deposition,” Thin Solid Films 355, 223 – 228 (1999).
[110] T. E. Stern, B. S. Gossling and R. H. Fowler, “Further studies in the emission of electrons from cold metals,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 124 (1929).
[111] S. Podenok, M. Sveningsson, K. Hansen and E. E. Campbell, “Electric field enhancement factors around a metallic, end-capped cylinder,” Nano, 1(01), 87-93(2006).
[112] M. Moselhy and K. H. Schoenbach, “Excimer emission from cathode boundary layer discharges,” J. Appl. Phys., Vol. 95, No. 4 (2004).
[113] J. Chao and W. youqing, “Formation of large-volume high pressure plasma in triode configuration discharge devices,” Plasma Science and Technology, Vol.8, No.2 (2006).
[114] H. Park, T. Lee, K. W. Park and H. K. Baik, “Formation of large-volume, high-pressure plasmas in microhollow cathode discharges” Appl. Phys. Lett., Vol. 82, No. 19 (2003).
[115] K. L. Junck and W. D. Getty, “Comparison of Ar electron‐cyclotron‐resonance plasmas in three magnetic field configurations. I. Electron temperature and plasma density,” J. Vac. Sci. Technol. A12, 2767 (1994).
[116] T. Mehdi, P. B. Legrand, J. P. Dauchot, M. Wautelet, and M. Hecq, “Optical emission diagnostics of an rf magnetron sputtering discharge” Spectrochim. Acta B48, 1023-1033, (1993).
[117] Y. Nakamura, M. Wong, and I. Matsui, in Proceedings of the 11th International Conference on Gas Discharges and Their Applications, Tokyo, 1995~Inst. Elec. Eng. Japan, Tokyo, II-402 (1995).
[118] A. A. Shatas, Y. Z. Hu, and E. A. Irene, “Langmuir probe and optical emission studies of Ar, O2, and N2 plasmas produced by an electron cyclotron resonance microwave source,” J. Vac. Sci. Technol. A10, 3119-3124 (1992).
[119] D. A. O. Hope, T. I. Cox, and V. G. I. Deshmukh, “Langmuir probe and optical emission spectroscopic studies of Ar and O2 plasmas,” Vacuum37, 275–277 (1987).
[120] K. Kano, M. Suzuki and H. Akatsuka, “Spectroscopic measurement of electron temperature and density in argon plasmas based on collisional-radiative model,” Plasma Sources Sci. Technol. 9, 314–322 (2000).
[121] D. L. Crintea, U. Czarnetzki, S. Iordanova, I. Koleva and D. Luggenholscher, “Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering,” J. Phys. D: Appl. Phys.42, 045208 (2009).
[122] X. M. Zhu, Y. K. Pu, N. Balcon and R. Boswell, “Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy,” J. Phys. D: Appl. Phys.42(14),142003 (2009).
[123] M. V. Malyshev and V. M. Donnelly, “Determination of electron temperatures in plasmas by multiple rare gas optical emission, and implications for advanced actinometry,” J. Vac. Sci. Technol. A 15, 550-558 (1997).
[124] M. V. Malyshev, V. M. Donnelly, and S. Samukawa, “Ultrahigh frequency versus inductively coupled chlorine plasmas: Comparisons of Cl and Cl2 concentrations and electron temperatures measured by trace rare gases optical emission spectroscopy,” J. Appl.Phys.84, 1222-1230 (1998).
[125] H. L. Maynard, M. V. Malyshev, V. M. Donnelly, and W. W.Tai~unpublished!
[126] V. M. Donnelly, M. V. Malyshev, A. Kornblit, N. A. Ciampa, J. I. Colonell, and J. T. C. Lee, “Trace Rare Gases Optical Emission Spectroscopy for Determination of Electron Temperatures and Species Concentrations in Chlorine-Containing Plasmas,” Jpn. J. Appl. Phys., Part 137, 2388-2393 (1998).
[127] M.C. Garcıa, A. Rodero, A. Sola, A. Gamero, “Spectroscopic study of a stationary surface-wave sustained argon plasma column at atmospheric pressure,” Spectrochimica Acta Part B., 55,1733-1745 (2000).
[128] W.L. Wiese, M.W. Smith and M. Miles, “Atomic Transition Probabilities,” vol II, NSDRS, Washington DC (1969).
[129] M. A. Lieberman, A. J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” 2nd ed.; John Wiley & Sons: Hoboken, NJ (2005).
[130] B. Chapman, “Sputtering and Plasma Etching,” John Wiley & Sons: New York (1980).
[131] K. Srinivasu, K. J. Sankaran, K. C. Leou, N. H. Tai, I. N. Lin, “Microplasma Device Architectures with Various Diamond Nanostructures and Their Characteristics. Plasma Sources Sci. Technol. 2014, submitted for publication.
[132] M. Blajan, A. Umeda, S. Muramatsu and K. Shimizu, “Emission spectroscopy of pulsed powered microplasma for surface treatment of PEN film,” Industry Applications, IEEE Transactions on, 47(3), 1100-1108 (2011).
[133] R. Friedl and U. Fantz, “Spectral intensity of the N2 emission in argon low-pressure arc discharges for lighting purposes,” New Journal of Physics 14, 043016 (2012).
[134] A. Qayyum, S. Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri and M. Zakaullah, “Optical emission spectroscopy of Ar–N2 mixture plasma,” Journal of Quantitative Spectroscopy and Radiative Transfer,107(3), 361-371, (2007).
[135] A. Guerrero, L. Salazar-Flores, C. Torres-Segundo, H. Martínez, G. P. Reyes, and F. Castillo, “Diagnostics of parameters by optical emission spectroscopy and Langmuir probe in a discharge of Ar/N2/CH4 ternary mixture,” Journal of Physics: Conference Series 370, 012047 (2012).
[136] J. Chao and W. Y. Qing, “Plasma display panel with micro-discharge array,” OPTOELECTRONICS LETTERS, 1, No.3 (2005).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔