跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林泉融
研究生(外文):Lin, Chuan Jung
論文名稱:鋁誘發固相磊晶技術異質磊晶矽鍺薄膜於矽基板上之研究
論文名稱(外文):Hetero-epitaxial growth Si1-xGex film via a low temperature aluminum-induced solid phase epitaxy (AI-SPE) process
指導教授:陳福榮陳福榮引用關係
指導教授(外文):Chen, Fu Rong
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:173
中文關鍵詞:鋁誘發固相磊晶矽鍺
外文關鍵詞:aluminum-induced solid phase epitaxySilicon germanium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:2
減少太陽能元件製造所需的成本,將使聚光型太陽能電池在市場上更有競爭能力。其中一種方式就是利用單晶矽基板取代單晶鍺或砷化鎵(GaAs)基板,在矽基板上透過異質磊晶的方式成長不同鍺濃度之矽鍺磊晶層,最後單晶矽基板的表面具有鍺的晶格特性,因此可以將三五族太陽能電池直接生長在單晶矽基板上,大幅降低電池成本。本研究中,將利用鋁誘發固相磊晶技術於低溫環境下成長不同鍺濃度之矽鍺磊晶層。在以往的研究中,鋁誘發結晶多晶矽或多晶鍺的機制已被完善的探討;但是在鋁誘發固相磊晶的系統中仍是一知半解,在本研究中,我們將探討 (1) 非晶鍺預摻雜位置;(2) 非晶鍺預摻雜濃度; (3) 反應溫度對鋁誘發固相磊晶系統的影響。研究結果表明,矽鍺比例在鋁誘發固相磊晶反應後是可以透過預摻雜非晶鍺的濃度來控制,且反應溫度應高於400˚C。
基於上述研究結果,再透過穿透式電子顯微鏡臨場加熱系統觀察鋁誘發固相磊晶的整體反應過程及熱力學計算及分析,可以將鋁誘發固相磊晶的反應機制完整建立: (1) 非晶矽鍺受到鋁外層自由電子的影響,使共價鍵的鍵能弱化或斷鍵,形成自由原子;(2) 因擴散驅動力的驅使,自由原子會透過鋁的晶界擴散到鋁和單晶矽基板的界面,並以非晶型態穩定在此並累積(擴散);(3) 當非晶型態矽鍺累積厚度超過臨界厚度時,造成系統不穩定,為使系統趨於穩定,非晶矽鍺會在鋁和單晶矽基板界面產生一個新的成核點(結晶型態),該成核點的晶相會受到單晶矽基板表面原子排列的影響,沿著單晶矽基板有序排列;(4) 非晶矽鍺會透過鋁的晶界繼續擴散,供應成核點持續垂直成長及側向生長(長晶),由於要釋放應力的因素,鋁會往原本非晶矽鍺的位置移動;(5) 最後形成連續的矽鍺磊晶薄膜。基於上述研究之結果,最後我們利用多道鋁誘發固相磊晶製程成功的製備鍺虛擬基板,它可以提供給聚光型太陽能電池或積體電路等作為低成本基板。

Reducing the solar cell manufacture cost makes the concentrator photovoltaic (CPV) has more competitive in the market. One of the potential method is to use a single crystal silicon substrate (sc-Si) substituted germanium or gallium arsenide (GaAs) substrate. Growth of Si1-xGex epitaxial layer on single crystal Si substrate with different Ge concentration makes the single crystal Si substrate have Ge properties including lattice constant and so on, which maybe significant reduce the CPV manufacture cost. In this study, we will use the aluminum-induced solid phase epitaxy (AI-SPE) process to fabricate Si1-xGex epitaxial layer with different Ge concentration under low-temperature. In previous study, the mechanism of aluminum-induced crystallization (AIC), it used to grow poly-Si or poly-Ge, has well studied and build up. However, researchers have a superficial knowledge of aluminum-induced solid phase epitaxial. We believe that the mechanism of AI-SPE should be build-up if we would like to control the reaction process.


In this study, we will firstly discuss the effect of (1) pre-doping Ge position, (2) pre-doping Ge concentration, and (3) reaction temperature during AI-SPE process. According to the results, the Ge concentration indeed can be well controlled via pre-doping Ge technique after AI-SPE process, and the optimal reaction temperature should higher that 400˚C.
Moreover, we will use in-situ heating transmission electron microscopy to observer the AI-SPE reaction process, and the analysis of the thermodynamics exactly supports the finding from in situ TEM. Based on these results, the mechanism of AI-SPE can be concluded into five steps: (1) The covalent bond of a-Si1-xGex will be weakened and formed "free atoms" by electrons that it is surrounding the surface of aluminum (Screening effect); (2) The free atoms driven by the diffusion driving force, it will diffuse through aluminum grain boundaries to the interface between aluminum and single crystal Si substrate, and the free atoms will thermodynamically stable accumulate at interface until its thickness reaches the critical thickness (Diffusion); (3) As the accumulated thickness reaching the critical thickness, the system will become unstable. The a-Si1-xGex will generate a new crystalline phase to reduce the free energy making the system become stable, that is, Si1-xGex nuclei. the crystal orientation of Si1-xGx nuclei will affect by single crystal Si substrate and hetero-epitaxial grow on it (Nucleation); (4) The free atoms will continuously diffuse to the interface between aluminum and single crystal Si substrate, and supply to the nucleus for vertical and lateral growth. Simultaneously, the stress existing in the aluminum film generated during free atoms diffusion will release, thus, the aluminum will move to the position of a-Si1-xGex (Grain growth); (5) Finally, to form a continuous silicon-germanium epitaxial layer on the single crystal Si substrate. Based on the above study results, we finally successful prepared a germanium virtual substrate via multi-run aluminum-induced solid-phase epitaxy process, which can provide to CPV or integrated circuit as a low-cost substrate or template.


摘要 I
Abstract III
致謝 VI
目錄 VIII
圖目錄 X
表目錄 X
第一章 緒論及研究動機 1
第二章 文獻回顧 17
2.1 金屬誘發結晶 17
2.2 磊晶 34
2.2.1 氣相磊晶 35
2.2.2 液相磊晶 37
2.2.3 固相磊晶 38
2.3 鋁誘發固相磊晶熱力學模型 45
2.3.1 結晶能 47
2.3.2 表面能 47
2.3.3 界面能 49
2.3.4驅動力及臨界厚度 53
第三章 實驗方法與步驟 82
3.1 製程設備 83
3.2 樣品製備 85
3.3 分析儀器 88
第四章 結果與討論 113
4.1 預摻雜鍺於鋁薄膜或非晶矽中之影響 113
4.2 預摻雜不同鍺濃度於非晶矽中的影響 115
4.3反應溫度對於不同鍺濃度於非晶矽中的影響 122
4.4 熱力學計算結果及穿透式電子顯微鏡臨場加熱觀察鋁誘發固相磊晶反應過程 124
4.5鍺虛擬基板 133
第五章 結論 149
參考文獻 151
附錄一、已發表論文 174
圖目錄
圖1-1 二氧化碳濃度歷年變化 9
圖 1-2 2016年全球累計太陽能安裝量分析(按區域市場劃分)……….9
圖1-3 (a) AM1.5G太陽光譜及單接面矽基太陽能電池吸收範圍及能量損失; (b) 理論光電轉換效率對應於半導體的帶隙及Shockley-Queisser理論限制 10
圖1-4 AM1.5G太陽光譜及多接面三五族太陽能電池吸收範圍 11
圖1-5理論最大光電轉換效率對應於p-n接面的數目 11
圖 1-6 理論計算雙接面聚光型太陽能電池光電轉換效率等高線圖 12
圖 1-7 (a) 利用晶圓鍵合方式製作四接面太陽能電池。(a) 元件結構示意圖;(b) 元件SEM剖面圖;(c) 外部量子效率圖;(d) 電流-電壓曲線圖 13
圖 1-8 在室溫下不同三五族材料之晶格常數、能階及波長分佈圖 14
圖 1-9矽鍺合金之晶格常數對應於不同鍺濃度 15
圖1-10 (a) 鍺濃度線性漸變之矽鍺緩衝層;(b) 鍺濃度步階漸變之矽鍺緩衝層 15
圖 1-11 穿透式電子顯微鏡(TEM)側視圖 (a) 鍺濃度線性漸變之矽鍺緩衝層;(b) 鍺濃度步階漸變之矽鍺緩衝層 16
圖1-12 矽晶中雜質能階分佈圖 16
圖 2-1 不同金屬對於非晶矽或非晶鍺轉變為結晶矽或結晶鍺之轉變溫度 55
圖2-2 非晶鍺/金雙層系統在100°C條件下反應60分鐘。(a) TEM明場像;(b)高倍TEM明場像;(c)擇區繞射圖 55
圖2-3 金/鍺系統之高分辨TEM影像。(a) 100°C反應60分鐘之不規則碎片區域;(b) 在金晶界中的微小鍺晶粒 56
圖2-4 利用金/鍺系統於軟板上製備高(111)優選取向之鍺薄膜。(a)軟板照片;(b)光學顯微鏡影像;(c) EBSD分析結果;(d) 結構示意圖 57
圖2-5利用(a)小晶粒鋁薄膜;(b)大晶粒鋁薄膜誘發非晶矽結晶 58
圖2-6 透過不同鋁厚鍍來誘發非晶矽結晶。(a) 鋁薄膜厚度30nm;(b)鋁薄膜厚度200nm 58
圖2-7 透過鋁誘發結晶技術製備雙層多晶矽。(a) SEM圖;(b)反應機制示意圖 59
圖2-8 利用臨場能量過濾穿透式電子顯微鏡(In-situ energy-filtered transmission electron microscopy;EFTEM)觀察鋁誘發非晶矽結晶過程。(a)TEM明場像及EFTEM影像;(b1)~(b3)及(c1)~(c3)不同溫度時之EFTEM影像;(d) 層交換後EFTEM影像 60
圖 2-9 鋁誘發結晶機制模型:該示意圖清楚地描述了鋁誘發結晶過程的五個步驟,由上而下深灰色/黑色/灰色/白色的堆疊分別表示非晶矽/氧化鋁/鋁/玻璃基板 61
圖2-10 透過臨場XRD觀察鋁/矽和鋁/鍺從25°C 到250°C晶體變化 61
圖2-11 電子背向散射繞射圖對應於不同氧化鋁層厚度極不同退火溫度 62
圖2-12 襯底(Underlayer)對鋁誘發非晶鍺結晶晶相之影響。(a) 襯底XRD圖譜;(b) 使用不同襯底之EBSD結果 63
圖2-13 Katsuki團隊提出之鋁/鍺系統反應機制 64
圖2-14 鋁誘發非晶鍺結晶,不同膜層結構示意圖(a) a-Ge/Al;(b) Al/a-Ge。(c) GB-mediate結晶及(d) Interface-mediated結晶示意圖 65
圖2-15 鋁誘發非晶矽鍺的成長特性取決於氧化鋁層成長時間及鍺濃度 66
圖2-16 利用鋁誘發結晶技術製備不同鍺濃度多晶矽鍺薄膜之拉曼光譜,圖中虛線為利用MBE所製備的矽鍺磊晶層拉曼光譜 67
圖2-17 鍺濃度對應到晶格常數。實線為理論計算,圓圈為實驗值 68
圖2-18 氧化層對鋁誘發非晶矽鍺結晶之影響 68
圖2-19 非晶鍺/鋁/單晶矽透過鋁誘發結晶技術成長矽鍺合金 69
圖2-20 不同鍺中間層厚度對於鋁誘發結晶機制之影響 69
圖2-21 鋁誘發非晶矽鍺結晶後晶格常數變化及Vergard’s law計算結果 70
圖 2-22 Ni和Si混合吉布斯自由能 70
圖 2-23 矽磊晶成長於NiSi2 {111}平面: (a) 低倍率; (b) 高倍率NiSi2/c-Si界面 71
圖2-24 (a) 50nm非晶矽鍺樣品在500˚C的條件下退火6小時;(b) 5nm的鎳加入50nm非晶矽鍺樣品;(c) 5nm的鎳加入50nm非晶矽鍺樣品在500˚C的條件下退火6小時 72
圖 2-25 (a) 無傳輸介質之固相磊晶; (b) 有傳輸介質之固相磊晶 73
圖2-26 SIMS圖譜。在鋁誘發固相反應前,氧化鋁的位置是出現在鋁和非晶矽之間;反應後,有一小部份的鋁停留在磊晶矽及單晶矽基板之間 74
圖2-27 利用鋁誘發固相磊晶製程在n型單晶矽基板上製作p型磊晶矽,並製做成太陽能電池。(a) 鋁誘發固相磊晶反應前;(b) 鋁誘發固相磊晶反應後;(c) 太陽能電池電流-電壓曲線圖 75
圖2-28 利用鋁誘發固相磊晶製作重摻雜磊晶矽薄膜並作為太陽能電池的背表面電場 76
圖 2-29 PC1D模擬背表面電場載子濃度及膜層厚度對應於太陽能電池光電轉換效率 76
圖2-30 利用掃描式電子顯微鏡解析鋁誘發固相磊晶反應機制。(a) 結構式意圖;加熱500˚C, (b) 並持溫1.5分鐘後將膜層移除;(c) 持溫2分鐘後將膜層移除;(d) 持溫6分鐘後將膜層移除;(e) 持溫30分鐘後將膜層移除;(b) 最佳非晶矽與鋁厚度比例,持溫30分鐘 77
圖2-31 非晶鍺/金/單晶矽基板膜層結構透過金誘發固相磊晶生長矽鍺磊晶薄膜之TEM明場像影像。箭頭標是處為孿晶 78
圖2-32 非晶鍺/鋁/單晶矽基板膜層結構透過鋁誘發固相磊晶生長矽鍺磊晶薄膜。(a) 反應前;(b) 反應後,箭頭標示處為單晶矽基板溶解位置 79
圖 2-33 非晶矽鍺成核機制示意圖。(a)成核點發生於鋁晶界中;(b)成核點發生於上界面;(c)成核點發生於下界面。(d)為剛鍍製完成的疊層;(e)為反應後的疊層 80
圖 3-1 單晶矽基板清洗流程圖 103
圖3-2 鋁誘發固相磊晶示意圖 104
圖3-3 TEM樣品製備順序: 樣品(a) 切割;(b) 清潔;(c) 上膠;(d) 對貼;(e) 固化;(f) 黏貼;(g) 第一面研磨;(h) 第二面研磨;(i) 黏貼於銅環上;(j) 離子減薄機細修。(k) 彩虹紋路 105
圖3-4 本研究中所使用的離子減薄機(Precision ion polishing system) 106
圖3-5 本研究所使用之穿透式電子顯微鏡,廠牌為JEOL,型號為6330F 107
圖3-6 (a) 入射電子對樣品繞射產生 Kossel cones 並在磷光屏幕上顯示菊池線的原理示意圖;(b) 由菊池線結合所形成的電子背向散射繞射圖形 108
圖3-7 本研究所使用之穿透式電子顯微鏡,廠牌為JEOL,型號為2010-F 109
圖3-8 本研究所使用的拉曼光譜儀,廠牌為Horiba Jobin Yvon,型號為LABRAM HR 800 UV 110
圖3-9 (a) 本研究所使用之二次離子質譜儀(a) 二次離子質譜儀之基本原理示意圖 111
圖3-10 本研究所使用之Bede D1 X光繞射儀,廠牌型號為Bade D1 112
圖4-1 (a) 預摻雜鍺於不同位置之結果,包含示意圖、SEM影像、EBSD結果及晶相座標圖,其中結構(A)為鍺雜於鋁薄膜當中,結構(B)為鍺摻雜於非晶矽當中;(b)各晶相統計值方圖 135
圖 4-2 (a)鋁誘發固相磊晶反應前及反應後卡通圖。(b)及(d)為SiGe-50及SiGe-75之SEM俯視圖;(c)及(e)為SiGe-50及SiGe-75之電子背向散射繞射結果圖 136
圖 4-3 不同鍺濃度矽鍺磊晶層之拉曼光譜圖 137
圖 4-4 SIMS縱深分佈圖。SiGe-50及SiGe-75 (a)及(c)反應前;(b)及(d)反應後 138
圖 4-5 SiGe-50穿透式電子顯微鏡分析結果。(a)及(b)反應前後側視圖;(c) EDX元素分佈圖;(d) 高分辨穿透式電子顯微鏡分析結果 139
圖 4-6 SiGe-75穿透式電子顯微鏡分析結果。(a)及(b)反應前後側視圖;(c) EDX元素分佈圖;(d) 高分辨穿透式電子顯微鏡分析結果;(e) 電子損失能譜分析結果 140
圖4-7 鋁誘發固相磊晶界面形態示意圖 141
圖4-8變溫X光繞射分析圖譜。(a) SiGe-50;(b) SiGe-75;(c) 溫度對鍺含量分佈 142
圖 4-9 穿透式電子顯微鏡臨場加熱觀察Si0.5Ge0.5於450℃退火之反應過程 (升溫速率: 5℃/ min.;尺標為500nm). (a) 反應前膜層結構(室溫); (b) 450℃/ 1min. (c) 450℃/2min.; (d) 450℃/3min.; (e) 450℃/5min.; (f) 450℃/10min.; (g) 450℃/ 15min.; (h) 450℃/20min.; (i) 高分辨影像 144
圖 4-10 (a) 熱力學計算分別得到鋁的晶界能及鋁非晶矽鍺界面能; (b) TEM影像及EDX線掃描橫跨鋁晶界; (c) 結晶能與鍺濃度及退火溫度關係圖;(d) 臨界厚度與鍺濃度及退火溫度關係圖 145
圖 4-11 鋁誘發矽鍺磊晶之反應機制。(1) 矽鍺自由原子的形成並擴散至鋁和單晶矽基板之界面;(2) 在鋁和單晶矽基板之界面析出成核;(3) 矽鍺晶粒的垂直及側向成長;(4) 層與層置換 146
圖4-12 (a) 利用多道鋁誘發固相磊晶製程製作鍺虛擬基板示意圖;(b) 各層矽鍺磊晶層之SEM圖及大面積EBSD分析結果圖 147
圖 4-13 鍺虛擬基板。(a) TEM影像;(b)-(d) 高分辨TEM影像;(e)-(g) 元素分佈圖 148

表目錄
表 1-1 不同尺寸、材料單晶晶圓價格 14
表 2-1本研究使用到的熱力學參數 81
表 2-2本研究使用到的熱力學參數 81
表4-1 Si(400)、Ge(400)、SiGe-50(400)及SiGe-75(400)之繞射角度(θ)、晶格間距(d-spacing)及晶格常數(Lattice constant) 143














1. 彭淮棟. 大氣二氧化碳濃度 增幅新高. 2016; Available from: http://money.udn.com/money/story/5599/1556623-%E5%A4%A7%E6%B0%A3%E4%BA%8C%E6%B0%A7%E5%8C%96%E7%A2%B3%E6%BF%83%E5%BA%A6-%E5%A2%9E%E5%B9%85%E6%96%B0%E9%AB%98.
2. Osborne, M., IHS forecasts global solar market to top 69GW in 2016. PVTECH, 2016.
3. 王智弘. 中美日需求維持高檔 2016年太陽能安裝量攀新高. 2016; Available from: http://www.mem.com.tw/article_content.asp?sn=1605310017.
4. Wesoff, E. First Solar CEO: ‘By 2017, We’ll Be Under $1.00 per Watt Fully Installed’. 2015; Available from: http://www.greentechmedia.com/articles/read/First-Solar-CEO-By-2017-Well-be-Under-1.00-Per-Watt-Fully-Installed.
5. Weber, E.R., THE PRESENT STATUS AND FUTURE PERSPECTIVES OF SOLAR ENERGY TECHNOLOGIES. 2015.

6. Lewis, N.S., Basic Research Needs for Solar Energy Utilization. 2005.
7. Martí, A. and G.L. Araújo, Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells, 1996. 43(2): p. 203-222.
8. Yu, W.J., et al., Semitransparent Polymer Solar Cells with 5% Power Conversion Efficiency Using Photonic Crystal Reflector. Acs Applied Materials & Interfaces, 2014. 6(1): p. 599-605.
9. Depauw, V., et al., Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals. Ieee Journal of Photovoltaics, 2014. 4(1): p. 215-223.
10. Sun, L. and C. Jiang, Semiconductor quantum dot-doped glass as spectral converter for photovoltaic application. Chinese Science Bulletin, 2014. 59(1): p. 16-22.
11. Gupta, A., M. Vashistha, and P. Sharma, Single junction a-Si:H solar cell with a-Si:H/nc-Si:H/a-Si:H quantum wells. Thin Solid Films, 2014. 550: p. 643-648.


12. Xu, H.B., et al., Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells. Applied Energy, 2010. 87(11): p. 3425-3430.
13. Venkataraj, S., et al., Light Scattering Enhancement by Double Scattering Technique for Multijunction Thin-Film Silicon Solar Cells. Ieee Journal of Photovoltaics, 2013. 3(2): p. 605-612.
14. Kohata, H. and Y. Saito, Maskless texturization of phosphorus-diffused layers for crystalline Si solar cells by plasmaless dry etching with chlorine trifluoride gas. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2124-2128.
15. Zhang, J., et al., Si nanocrystal-based triple-layer anti-reflection coating for Si solar cells. Journal of Applied Physics, 2013. 114(5).
16. Gangopadhyay, U., et al., Anti-reflective nanocomposite based coating for crystalline silicon solar cells with noticeable significance. Journal of Renewable and Sustainable Energy, 2013. 5(3).
17. Wolf, M., et al., Solar cell efficiency and carrier multiplication in Si(1-x)Ge(x) alloys. Journal of Applied Physics, 1998. 83(8): p. 4213-4221.
18. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510-519.
19. Cotal, H., et al., III-V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2009. 2(2): p. 174-192.
20. Román, J.M., State-of-the-art of III-V solar cell fabrication technologies, device designs and applications. Advanced Photovoltaic Cell Design, 2004.
21. Kim, Y.S., et al., Advanced wafer thinning technology and feasibility test for 3D integration. Microelectronic Engineering, 2013. 107: p. 65-71.
22. M.W. Wanlass, et al. ADVANCED HIGH-EFFICIENCY CONCENTRATOR TANDEM SOLAR CELLS. in 22nd IEEE Photovoltaic Specialists Conference. 1991.
23. Dimroth, F., et al., Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 2014. 22(3): p. 277-282.
24. EnergyTrend PV. Available from: http://pv.energytrend.com/.
25. NSM Archive - Silicon Germanium (SiGe). Available from: www.ioffe.ru/SVA/NSM/Semicond/SiGe/.
26. Simoen, C., Germanium-Based Technologies: From Materials to Devices. 2007: Elsevier Ltd.
27. Chrastina, D., et al., Thin relaxed SiGe virtual substrates grown by low-energy plasma-enhanced chemical vapor deposition. Journal of Crystal Growth, 2005. 281(2-4): p. 281-289.
28. Isella, G., et al., Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electronics, 2004. 48(8): p. 1317-1323.
29. Capewell, A.D., et al., Terrace grading of SiGe for high-quality virtual substrates. Applied Physics Letters, 2002. 81(25): p. 4775-4777.
30. Sharif, K., et al., Epitaxial silicon thin films by low-temperature aluminum induced crystallization of amorphous silicon for solar cell applications. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2. 2006. 1676-1679.
31. Ozmen, O.T., M. Karaman, and R. Turan, Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique. Thin Solid Films, 2014. 551: p. 181-187.
32. Hong, W.-E. and J.-S. Ro, Kinetics of solid phase crystallization of amorphous silicon analyzed by Raman spectroscopy. Journal of Applied Physics, 2013. 114(7).
33. Ab Razak, S.N. and N. Bidin, Aluminium-Induced Crystallization of Silicon Thin Film by Excimer Laser Annealing. Sains Malaysiana, 2013. 42(2): p. 219-222.
34. Liu, F., et al., Rapid melt crystallization of amorphous-silicon thin films. Applied Physics Letters, 2013. 102(8).
35. Amin, M.S., N. Hozhabri, and R. Magnusson, Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films. Thin Solid Films, 2013. 545: p. 480-484.
36. Peng, C.-C., C.-K. Chung, and J.-F. Lin, Formation of microcrystalline silicon films using rapid crystal aluminum induced crystallization under low-temperature rapid thermal annealing. Thin Solid Films, 2010. 518(23): p. 6966-6971.
37. Nast, O., The aluminium-induced layer exchange forming polycrystalline silicon on glass for thin-film solar cells. 2000.
38. Wagner, R.S. and W.C. Ellis, VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Applied Physics Letters, 1964. 4(5): p. 89-90.
39. Knaepen, W., et al., In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. Journal of Applied Physics, 2009. 105(8).
40. Okamoto, H. and T. Massalski, The Au− Si (gold-silicon) system. Bulletin of Alloy Phase Diagrams, 1983. 4(2): p. 190-198.
41. Allen, L., et al., Two-dimensional Si crystal growth during thermal annealing of Au/polycrystalline-Si bilayers. Physical Review B, 1990. 41(12): p. 8203.
42. Chen, Z., et al., Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing. Applied surface science, 2005. 250(1): p. 3-8.
43. Sadoh, T., et al., Quasi-single crystal SiGe on insulator by Au-induced crystallization for flexible electronics. Japanese Journal of Applied Physics, 2016. 55(3S1): p. 03CB01.
44. Schneider, J., et al., A simple model explaining the preferential (100) orientation of silicon thin films made by aluminum-induced layer exchange. Journal of Crystal Growth, 2006. 287(2): p. 423-427.
45. Hwang, J.-D., et al., Large-Grain Epitaxial Thickening Polycrystalline Silicon Films on AIC-Seed Layer by HWCVD with Different Hydrogen Dilution. Electrochemical and Solid State Letters, 2012. 15(3): p. H69-H71.
46. Lee, S.R., K.M. Ahn, and B.T. Ahn, Silicon epitaxial growth on poly-Si film by HWCVD for low-temperature poly-Si TFTs. Journal of the Electrochemical Society, 2007. 154(9): p. H778-H781.
47. Fuhs, W., et al., A novel route to a polycrystalline silicon thin-film solar cell. Solar Energy, 2004. 77(6): p. 961-968.
48. Nast, O., et al., Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. Applied Physics Letters, 1998. 73(22): p. 3214-3216.
49. Nast, O. and A.J. Hartmann, Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. Journal of Applied Physics, 2000. 88(2): p. 716-724.
50. Nast, O. and S.R. Wenham, Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. Journal of Applied Physics, 2000. 88(1): p. 124-132.
51. Gall, S., et al., Aluminum-induced crystallization of amorphous silicon. Journal of Non-Crystalline Solids, 2002. 299: p. 741-745.
52. Wei, S.-Y., et al., Ultrafast Al(Si)-induced crystallisation process at low temperature. Crystengcomm, 2012. 14(15): p. 4967-4971.
53. Zou, M., et al., Nano-aluminum-induced crystallization of amorphous silicon. Materials Letters, 2006. 60(11): p. 1379-1382.
54. Sarikov, A., et al., Theoretical study of the kinetics of grain nucleation in the aluminium-induced layer-exchange process. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 980-983.
55. Schneider, J., et al., Aluminum-induced crystallization: Nucleation and growth process. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 972-975.
56. Wang, J.Y., et al., Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon. Applied Physics Letters, 2006. 88(6).
57. Stoeger-Pollach, M., et al., Phase transformations of an alumina membrane and its influence on silicon nucleation during the aluminium induced layer exchange. Thin Solid Films, 2007. 515(7-8): p. 3740-3744.
58. Kurosawa, M., et al., Orientation-controlled Si thin films on insulating substrates by Al-induced crystallization combined with interfacial-oxide layer modulation. Applied Physics Letters, 2009. 95(13).
59. Tang, Z., et al., Preparation of high quality polycrystalline silicon thin films by aluminum-induced crystallization. Thin Solid Films, 2009. 517(19): p. 5611-5615.
60. Wang, Z., et al., Real-Time Visualization of Convective Transportation of Solid Materials at Nanoscale. Nano Letters, 2012. 12(12): p. 6126-6132.
61. Lin, C.-J., et al., Growth mechanism of an aluminium-induced solid phase epitaxial (AI-SPE) Si0.5Ge0.5 layer using in situ heating transmission electron microscopy. CrystEngComm, 2016. 18(20): p. 3556-3560.
62. Lin, C.-J., et al., Hetero-epitaxial growth of stoichiometry tunable Si1-xGex film via a low temperature aluminium-induced solid phase epitaxy (AI-SPE) process. CrystEngComm, 2015. 17(33): p. 6269-6273.
63. Schneider, J., et al., Aluminium-induced crystallisation of amorphous silicon: Influence of oxidation conditions. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vols a-C, ed. K. Kurokawa, et al. 2003. 106-109.
64. Liu, Z., et al., Epitaxial growth of single-crystalline silicon-germanium on silicon by aluminium-assisted crystallization. Scripta Materialia, 2014. 71: p. 25-28.
65. Liu, Z., et al., One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering. Applied Physics Letters, 2014. 104(5): p. -.
66. Wang, Z.M., et al., "Explosive" crystallisation of amorphous germanium in Ge/Al layer systems; comparison with Si/Al layer systems. Scripta Materialia, 2006. 55(11): p. 987-990.
67. Toko, K., et al., Highly (111)-oriented Ge thin films on insulators formed by Al-induced crystallization. Applied Physics Letters, 2012. 101(7): p. 072106.
68. Toko, K., et al., Orientation control of Ge thin films by underlayer-selected Al-induced crystallization. CrystEngComm, 2014. 16(13): p. 2578-2583.
69. Katsuki, F., et al., Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate. Journal of Applied Physics, 2001. 89(8): p. 4643-4647.
70. Zhang, T., et al., Effect of stacking sequence on crystallization in Al/a-Ge bilayer thin films. Journal of Vacuum Science & Technology A, 2014. 32(3): p. -.
71. Kurosawa, M., et al., Interfacial-Oxide Layer Controlled Al-Induced Crystallization of Si1-xGex (x: 0-1) on Insulating Substrate. Japanese Journal of Applied Physics, 2009. 48(3).
72. Gjukic, M., et al., Aluminum-induced crystallization of amorphous silicon-germanium thin films. Applied Physics Letters, 2004. 85(11): p. 2134-2136.
73. Kurosawa, M., et al., Ge Fraction Dependence of Al-Induced Crystallization of SiGe at Low Temperatures. Journal of the Korean Physical Society, 2009. 54(1): p. 451-454.
74. Iwasa, T., et al., Polycrystalline silicon germanium thin films prepared by aluminum-induced crystallization. Physica Status Solidi a-Applications and Materials Science, 2010. 207(3): p. 617-620.
75. Zhang, T.-W., et al., Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe. Applied Physics Letters, 2012. 100(7).
76. Lin, J.-Y. and P.-Y. Chang, Growth of poly-crystalline silicon–germanium on silicon by aluminum-induced crystallization. Thin Solid Films, 2012. 520(23): p. 6893-6899.
77. Suzuki, H., et al., Impact of amorphous Ge thin layer at the amorphous Si/Al interface on Al-induced crystallization. Journal of Crystal Growth, 2010. 312(22): p. 3257-3260.
78. Usami, N., M. Jung, and T. Suemasu, On the growth mechanism of polycrystalline silicon thin film by Al-induced layer exchange process. Journal of Crystal Growth, 2013. 362(0): p. 16-19.
79. Niedermeier, C.A., Z. Wang, and E.J. Mittemeijer, Al-induced crystallization of amorphous SixGe1-x (0 < x < 1): Diffusion, phase development and layer exchange. Acta Materialia, 2014. 72(0): p. 211-222.
80. Hayzelden, C. and J.L. Batstone, Silicide formation and silicide‐mediated crystallization of nickel‐implanted amorphous silicon thin films. Journal of Applied Physics, 1993. 73(12): p. 8279-8289.
81. Peng, D., et al., Ni Induced Crystallization of Amorphous SiGe. Chinese Journal of Semiconductors, 2014. 25(11): p. 5.
82. Guang-Wei, W., et al., Metal-induced crystallization of amorphous silicon and silicon germanium films. Chinese Journal of Liquid Crystals and Displays, 2009. 24(3): p. 11.
83. Donnay, J.D.H., Epitaxy, in Mineralogy. 1981, Springer US: Boston, MA. p. 149-150.
84. Nelson, M., Epitaxy growth from liquid state and it application to the fabrication of tunnel and laser diode. RCA Review, 1963. 24: p. 13.
85. Rodriguez, A., et al., Strain compensation by heavy boron doping in Si1-xGex layers grown by solid phase epitaxy. Journal of Materials Research, 1997. 12(7): p. 1698-1705.
86. Qi, W.J., et al., Investigation on solid phase epitaxy of deposited SiGe film on a Si substrate. Thin Solid Films, 1997. 293(1-2): p. 310-314.
87. Chaki, T.K., SOLID-PHASE EPITAXY - EFFECTS OF IRRADIATION, DOPANT, AND PRESSURE. Physica Status Solidi a-Applied Research, 1994. 142(1): p. 153-166.
88. Paine, D.C., et al., THE GROWTH OF STRAINED SI1-XGEX ALLOYS ON (001) SILICON USING SOLID-PHASE EPITAXY. Journal of Materials Research, 1990. 5(5): p. 1023-1031.
89. Roth, J.A., et al., Kinetics of solid phase epitaxy in thick amorphous Si layers formed by MeV ion implantation. Applied Physics Letters, 1990. 57(13): p. 1340-1342.
90. Kunii, Y., M. Tabe, and K. Kajiyama, AMORPHOUS-SI CRYSTALLINE-SI FACET FORMATION DURING SI SOLID-PHASE EPITAXY NEAR SI/SIO2 BOUNDARY. Journal of Applied Physics, 1984. 56(2): p. 279-285.
91. King-ning Tu, James W. Mayer, and L.C. Feldman, Electronic thin film science: for electrical engineers and materials scientists. 1996: Macmillan Publishing Company.
92. Ramanath, G., et al., Au-mediated low-temperature solid phase epitaxial growth of a SixGe1-x alloy on Si(001). Journal of Applied Physics, 1996. 79(6): p. 3094-3102.
93. Pretorius, R., et al., Growth mechanism for solid‐phase epitaxy of Si in the Si 〈100〉/Pd2Si/Si(amorphous) system studied by a radioactive tracer technique. Journal of Applied Physics, 1977. 48(7): p. 2886-2890.
94. King-ning Tu, James W. Mayer, and L.C. Feldman, Electronic thin film science: for electrical engineers and materials scientists
1996: Macmillan Publishing Company.
95. Majni, G. and G. Ottaviani, SOLID-PHASE EPITAXIAL-GROWTH OF SI THROUGH AL FILM. Journal of the Electrochemical Society, 1977. 124(8): p. C290-C290.
96. Majni, G. and G. Ottaviani, Large-area uniform growth of <100> Si through Al film by solid epitaxy. Applied Physics Letters, 1977. 31(2): p. 125-126.
97. Trumbore, F.A., Solid solubilities of impurity elements in germanium and silicon. Bell System Technical Journal, 1960. 39(1): p. 205-233.
98. Tsaur, B.Y., G.W. Turner, and J.C.C. Fan, Efficient Si solar cells by low-temperature solid-phase epitaxy. Applied Physics Letters, 1981. 39(9): p. 749-751.
99. Koschier, L.M. and S.R. Wenham, Improved open circuit voltage using metal mediated epitaxial growth in thyristor structure solar cells. Progress in Photovoltaics: Research and Applications, 2000. 8(5): p. 489-501.
100. Wei, S.-Y., et al., Epitaxial growth of heavily boron-doped Si by Al(B)-induced crystallisation at low temperature for back surface field manufacturing. Crystengcomm, 2013. 15(9): p. 1680-1684.
101. Civale, Y., et al., On the Mechanisms Governing Aluminum-Mediated Solid-Phase Epitaxy of Silicon. Journal of Electronic Materials, 2009. 38(10): p. 2052-2062.
102. Liu, Z., et al., Epitaxial growth of single-crystalline silicon–germanium on silicon by aluminium-assisted crystallization. Scripta Materialia, (0).
103. Wang, Z., et al., Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Physical Review B, 2008. 77(4).


104. Hiraki, A., A Model on the Mechanism of Room Temperature Interfacial Intermixing Reaction in Various Metal‐Semiconductor Couples: What Triggers the Reaction? Journal of The Electrochemical Society, 1980. 127(12): p. 2662-2665.
105. Hiraki, A., Initial formation process of metal/silicon interfaces. Surface Science, 1986. 168(1): p. 74-99.
106. Hiraki, A., Recent developments on metal-silicon interfaces. Applied Surface Science, 1992. 56–58, Part 1: p. 370-381.
107. Wang, Z., et al., Fundamentals of Metal-induced Crystallization of Amorphous Semiconductors. Advanced Engineering Materials, 2009. 11(3): p. 131-135.
108. Wang, Z.M., et al., Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Physical Review B, 2008. 77(4): p. 045424.
109. Benedictus, R., A. Bottger, and E.J. Mittemeijer, Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Physical Review B, 1996. 54(13): p. 9109-9125.
110. Benedictus, R., A. Böttger, and E.J. Mittemeijer, Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Physical Review B, 1996. 54(13): p. 9109-9125.
111. Zhao, Y.H., J.Y. Wang, and E.J. Mittemeijer, Interaction of amorphous Si and crystalline Al thin films during low-temperature annealing in vacuum. Thin Solid Films, 2003. 433(1-2): p. 82-87.
112. Zalar, A., et al., AES depth profiling of thermally treated Al/Si thin-film structures. Vacuum, 2003. 71(1-2): p. 11-17.
113. Zhao, Y.H., J.Y. Wang, and E.J. Mittemeijer, Initial interaction of crystalline Al/amorphous Si bilayer during annealing, in Amorphous and Nanocrystalline Silicon Science and Technology- 2004, G. Ganguly, et al., Editors. 2004. p. 309-314.
114. Liu, F., F. Sommer, and E.J. Mittemeijer, Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Materialia, 2004. 52(11): p. 3207-3216.
115. He, D., J.Y. Wang, and E.J. Mittemeijer, Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: microstructural and thermodynamic analysis of layer exchange. Applied Physics a-Materials Science & Processing, 2005. 80(3): p. 501-509.
116. He, D., J.Y. Wang, and E.J. Mittemeijer, Thermodynamic and kinetic criteria for layer exchange in amorphous silicon/crystalline aluminium bilayers during annealing. Scripta Materialia, 2006. 54(4): p. 559-561.
117. Wang, J.Y., Z.M. Wang, and E.J. Mittemeijer, Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers. Journal of Applied Physics, 2007. 102(11).
118. Wang, J.Y., et al., Mechanisms of Aluminium-Induced Crystallization and Layer Exchange Upon Low-Temperature Annealing of Amorphous Si/Polycrystalline Al Bilayers. Journal of Nanoscience and Nanotechnology, 2009. 9(6): p. 3364-3371.
119. Jaegle, E.A. and E.J. Mittemeijer, Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations. International Journal of Materials Research, 2011. 102(7): p. 837-845.
120. 射頻磁控濺鍍機(RF magnetron sputter).
121. 劉如熹. X光微區分析(EDS). 2000; Available from: http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report2.pdf.
122. 黃宏勝 and 林麗娟, FE-SEM-CL-EBSD分析技術簡介. 工業材料雜誌, 2003. 201.
123. 尤志州, et al., 歐傑電子能譜(AES)、二次離子質譜儀分析(SIMS)與化學分析電子術(ESCA). 2001.
124. Mooney, P.M., et al., Raman scattering analysis of relaxed GexSi1−x alloy layers. Applied Physics Letters, 1993. 62(17): p. 2069-2071.
125. Perova, T.S., et al., Composition and strain in thin Si1−xGex virtual substrates measured by micro-Raman spectroscopy and x-ray diffraction. Journal of Applied Physics, 2011. 109(3): p. 033502.
126. Dismukes, J.P., L. Ekstrom, and R.J. Paff, Lattice Parameter and Density in Germanium-Silicon Alloys. The Journal of Physical Chemistry, 1964. 68(10): p. 3021-3027.
127. Lin, C.-j., et al., Hetero-epitaxial growth of stoichiometry tunable Si1-xGex film via a low temperature aluminium-induced solid phase epitaxy (AI-SPE) process. CrystEngComm, 2015.
128. Chen, J.S., et al., EPITAXIAL-GROWTH OF GAAS BY SOLID-PHASE TRANSPORT. Applied Physics Letters, 1991. 59(13): p. 1597-1599.
129. Toko, K., et al., Self-organization of Ge(111)/Al/glass structures through layer exchange in metal-induced crystallization. CrystEngComm, 2014. 16(41): p. 9590-9595.
130. 魏松煙, 鋁誘發結晶製備結晶/磊晶薄膜應用於太陽能電池之研究, 工程與系統科學系. 2013, 國立清華大學: 新竹市. p. 140.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top